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In this P'hase I study funded under the Small Business Innovation Research (SDI) prorami,
statistical methods are developed using the predictive inference and entropy approach. Prevous
recent research has derived entropy as the natural measure of model WaimatO error from
the fundamental statistical principles of sufficiency and repeated samplin. in this sudy, the
areas of nonnested multiple comparison, multivarlable time seies analysis. adaptive time series
analysis of changing pyrcems, and optimal small aomple inference ane inveotigated, Constrained
mazimumi likelihood methods are developed for general sonsted multiple comparison. For the
asymptotic optimality of these methods, a condition on the Fisher information and Hessan
matrices mum be satisfied. Applying thes remalta to msultvauias time serie analysis, lower
bounds are derived for the achievable accuracy of the estimatedl tvanaler fumction and spectral
matries. MarkOW and Canonical variate analysis (CVA) povids a means of numerically and sta-
tistically sabl model fitting of multivariable time series, and these methods provide a basis for
modeling and fitting time varying models of changing pt'We'se"~ehd are derived for the

otmlselection of data length for fitting slowly changing, woceu woni as for optimal selec-
tion of the data interval for detection of abrupt changes. Optimal=27a: sampl methods for mul-
tivariate analysis are studied, and entropy methods are show to provide nicat impovements
in very small samples. Recommendations for Rias 11 research and deve~mn focus on the
adaptive and nonadaptive time series analysis procedures developed in thise 4.
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L INTRODUCIION AND OVERVIEW

In this mdy, statistical methods are developed using predictive inference and entropy. This
approach to statistical inference allows the treatment of several difficult statistical problem that

are no easily dealt with using traditional statistical methods. The particular statistical problems

addressd an

" statistcal model building involving the determination of parametric
model structure and order in the general cae of multiple nonnested
alternatives,

" time series modeling and forecasting involving the determination of
parametric model structure and order,

* adaptive time sries analysis involving optimal methods for tracking
slow changes as well as for detecting abrupt changes or failures,

* small ample inference for multivariate distributions of the exponen-
tial family.

A number of isues in thes topics are resolved naturally in the predictive inference and enuropy

setting. This repot provides an overview of the proress of the Phase I research with detailed

technical papers included in the Appendices.

The recent interest in predictive distributions has come from several directions. Modem

developments apparently begin with Jeffreys (1961, p.143) using a Bayesian approach as has much

of the work following (Aitchison and Dunsmore, 1975, preface and p39). The frequentist

viewpoint taken in this proposal has been stimulation by small sample problems (Murray, 1977,
1979), model order and structure determination problems involving parametric models (Akaike,

1973, 1974,), and nonnested multiple comparison problems (Larimore, 1977a, 1977b). Classical

methods are conceptually il-aited or perform poorly in practice on such problems.

In the first aper, the approach using predictive inference and entropy is described. The

bads of this approach is the derivation of enurop from the fundamental statistical principles of

fficiecy and repeased ampling in the context of the predictive inference setup as rust

prsetd in Larimore (193a). This provides a sound theoretical foundation that was previously

lacking for the use of entropy as the natura meamre of the error in approimating a true future

density by an esimated predictive density based upon a present sample. The generality of this
entropy me m allows comparisox of statistical inference methods and the derivation of more

optimal inference procedures including

'~. . V*%~'**~. '~% ~%~ ~. '~ ~ ~.''V% ~I
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S gomeral inference methods such as parametric or nonarametric
mabods

* exact evaluation of small sample procedures

* determination of model order or structure including the case of non.
nested multiple cpi

0 time series analysis icluding definition of optimal tracking of time
varying pross and optimal detection of abrupt chanss.

The generality of the predictive inference and entropy approach provides a basis for the generali-

zoao of the prmnt statistical and predictive inference methods to more general statistical prob-

lems.

In Chapter 2, the multiple comprison of nonnested constrained models is developed. Previ-

os developmen-t in multiple comparison have considered largely the nesed case n assume that

the true model is contained in one of the models. In the present study, the case of constrained

maximum likelihood estimation is considered where the true model may not be contained in any

of the hypo s d models. The entropy measure provides a measure that allows the multiple

comparison problem to be viewed as a model a problem. In this more general con-

text the AIC procedure and generalizations of it are found to give asympotcly optimal predic-

tive inference procedures as measured by entropy. In the nested case, these procedures reduce to

the generalized likelihood ratio (GLR) test where the probability of rejection is a function of the

number of additional parameters in the alternative model not contained in the null hypothesis.

Tun series analysis for stationary processes are considered in Chapter 4. The entropy meas-

ur provides a direct interpretation of the achievable accuracy in estimation of the power spec-

trum of a process. The entropy is expressed as a squared relative error in estimating the spec-

trum. A generalization of this to multiple time series relates to principle components of the pro-

ces cro spectral matrix. A lower bound is determined such that the expected integral of the

squared relative error in spectral estimation is bounded by the number of estimated parameters

divided by twice the samp sz. An example of spectral estimation of an ARMA(4,3) proces
using spectral uoohing, Autoregressive modeling, and ARMA modeling shows the relative error

in thos estimation methods a dependent on the number of estimated parameters.

The topics of Markovian time series or state space models provides an approach to time

series analysis that is readily computable and is easily extended to the case of chaning processes.

The gesal state space model form is developed for Markor poes. The canonical variate

analysis (CVA) method gives a direct and numerically stable computational method for determin-

ing state spce models from observational data. The bec computational method is the general-

inad singula value decomposition (SVD). This method allows for the direct determination of the
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optimal model state order without the computationally intensive fitting of such models for the

evaluation of model fit. Once the model state order is determined, the state space model coeffi-

cients am dMy computed by regrm on. Tis method geaerali eaily to changing processes.

Adaptive time series methods are developed in Chapter 5. Primarily two types of changes
are considered, slowly varying changes and abrupt changes such as faults. Time varying Markov

procees are developed for such changing processes. Such processes provide the hypothesized
models for developing opdal tracking and detection of abrupt changes. An AIC based pro-
cedure is derived for the near optimal selection of the data length to use in model fitting. An

example is given of estimating the spectrum of a time varying processes that gives results near the

best previous solutions that am much more specialized. For abrupt change detection, a generaLi-

zato of the AIC procedure is required since the comparison of models fitted on different data

intervals is required which is not considered in the AIC formulation. Application of these

methods to simulated data of abrupt changes in an ARMA(4,3) processes including jumps in the

state, changes in the dynamics, and change in the variance of the excitation noise processes,

demonstrates that the procedure is sensitive to the detection of these very different types of

abrupt changes.

Small sample multivariate inference procedures are described in Chapter 6. Since the

entropy measure gives an exact rational measure of the relative error of statistical inference pro.

cedures in small samples, it provides the bases for evaluation and development of small sample

inference methods. The historical approach to predictive inference involves the derivation of a

Bayesian predictive density. Although the method is Bayesian, in certain instances, the resultant

predictive density has certain invariance properties which lead to an optimal predictive density in

terms of the entropy measure. Another approach involves the direct solution for the optimal

invariant predictive density minimizing the entropy measure. This optimal invariant procedure

leads to the same predictive density as the Bayesian predictive density using a noninformative

prior. These methods are compared for the multivariate normal distribution with the estimative

and best normal estimation procedures.



2. APPROACH USING PREDIcTIVE INFERENCE AND ENTROPY

The concepts of prediction and inference based on a set of data ae very old and underlie

much of the scientific method. While the scientific method has been much discussed in philo-

soptical and qualitative terms, there has been very little in the literature from a basic statistical

viewpoint. The most extensive literature appears to be that associated with predictive densities or

predictive distributions (see Aitchison and Dunnore, 1975). That approach is to a large degree

Bayesim, although more recent treatments have developed a purely frequency sampling interpre-

tation in connection with use of entropy or Kuliback information. 1he weak point in the fre-

quency approach was the seemingly arbitrary use of the entropy measure of model approimation

error. More recently, however, the result of Larimore (1963a) has established the fundamental

nature of the entropy measure based upon the statistical principles of sufficiency and repeated

sampling. The entropy measure has in addition a very natural interpretation as the log relative

odds in comparing two predictive densities in predicting the future sample. This gives a central

role to the entropy measure. The use of the entropy measure for decisions on model order and

structure was pioneered by Akaike (1973), and has been applied to many diverse statstical prob-

lem particularly in time series analysis. The justification given to the entropy measure in the

Akaike approach, however, has been largely heuristic. Because of the importance of the justifi-

cation of the entropy measure, the derivation and important concepts are outlined below in Sec-

tion 2.1. The use of entropy in comparing model structure selection procedures and for exact

small sample inference is discussed in Section 2.2. This approach to developing statistical pro-

cedures using predictive inference and entropy is then applied to the various topics in the follow-

ing chapters of the report.

2.a Dervation of an 1hrmep Mmere ofreuimam

Predictive inference involves an experimental situation with two trials, an informative trial
with observatiom x and a predictive trial with observations y. The joint distibution of the two

trial is pearnitted my statistical dependence and is described by a joint probability density p(z ,y).

The objective is to choose a predictive distribution or density which, for each possible observed z,
is a probability density for the future outcome y. More precisely, consider a family p(I z,a) of

predictive densides where the index a specifies a particular predictive distribution. For a particu-

lar choice of a, p (A ,a) can be viewed as a conditional probability density of y given z for

predicting the distribution of the future observation y given an observed value of x. The predic-

tive inference problem involves selection of a criterion of fit for appraising the goodness of

LV ---------- e*
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ap tion to the true conditional probability density p(yj x) by the various predictive densi-
ties p(yj x,) specified by different a. The choice of such a criterion of fit is the primary topic of
this section. Negative entropy is derived as the natural measure of model approximation error for

any predictive distribution.

Consider a family C - f p.0 z), a 4) of predictive densities for approximating the true
density p.(j z) of the predictive experiment y given the informative experiment z, where x and y
are vectors of dimension K and L respectively with true joint density p.(xy). For the predictive
inference problem, a relative measure of goodness of approximation of p.('Y x) by the various

p.(yI z) is desired. To this end, a repeated sampling experiment is considered in which joint ran-
dam samples (xzy) for iar,..N, are drawn repeatedly from a population with density p.(x y).
The probability density of the joint predictive experiments Y ..... )W) predicted by the a-th
model using X - ( ... x) is

p.(Y IX) - [pM(YIZI) (2-1)
1-1

The probability density for Y can be considered as indexed by the pair (ak). Statistical infer-
ence is considered about the true density p.(YI X) of Y from among the family of probability den-

sities F - { p(rI x), a (A) for a fixed X.

To consider the essential statistical information about the future sample Y given by the
predictive densities p.(YJ X), the sufficiency of the likelihood function (Zacks, 1971, p. 61) is
used. From this principle, any inferences about the family F drawn on the basis of the sample
(YI X) follow from the observed values of the likelihood function p.(YI X) for a(A. The set of
likelihood ratios formed from pairs of these likelihoods is also a sufficient statisc (Cox and Hink-
ley, 1974, p. 20-1, ae also p. 37-9 for a discusson of likelihood and sufficiency principles).

For inference about the densities P, and P2, all of the information is contained in the likeli-

hood ratio

A N 1 ,].) (2-2)

i-IP21X

which has the intuitive interpretation of the relative odds of observing the data Y of the repeated
predictive trials from each of the distributions p , and p2 given fixed informative data X. The

behavior of AN as the number of repetitions becomes large is most easily seen by expressing it as

1 N P1&aJz,)
Jim-_L ,p 1 1p2)-_Lim - og101
N-e N N P20N1X

1 p 2 ~ 1 jz1

.. ,. .. ,..
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- SSpO(YX )  og l PAYIx) df dy

-ffp.(Y X) logp I ) dy p.() dz (2.3)

For a large number of repetitions, the odds will overwhelmingly favor P, or P2 if the limit is

respectively strictly positive of strictly negative. The preference for one distribution over the
other as expressed by the likelihood ratio tends to grow exponentially with the number N of

repeated trials. If (2-3) is zero, then there will be no consistent preference with large numbers of

trials. Although for a finite number N of repetitions the likelihood ratio AN depends upon the

particular samples (X ,Y), asymptotically for large numbers of repetitions this dependence disap-

pears.

The direct pairwise comparison of predictive densities is not necessary if the Kullback-

Leibler conditional discrimination information (Kullback and Leibler, 1951; Kullbeck, 1959, p. 13)

I ,(p.p') - fp.(A X) logPVIX) dy (2-4)

of p. relative to p. is used which is a function of x. Note that the order of p. and p. are not

interchangeable with the latter playing the role of the truth.

The likelihood ratio (2-3) is expressed in terms of the Kullback information as

Jim - log AN - E.{I, (P-1 P 2) - 1, .(PO (2-5)
N-rn N

where E, denotes expectation with respect to the true density p.(x). The criterion is thus deter-

mined as the weatve emropy, or negewropy for brevity, defined as

p.(yl x)
R(p.p) - Ey(p.,p) - fp.(x)dx fp.(z)log I X) dy (2-6)

the expected Kuilback conditional information of the predictive density relative to the true condi-

dond deusity p.(yj z). In the repeated sampling experiment, the predictive density with the

smaller nelentropy relative to the true is ultimately preferred. The negentropy (2-6) thus orders

the goodness of a set of predictive densities in approximating the true density. Also in comparing

any two predictive densities p I and P2, the respective difference has the intuitive interpretation as

the exponential rate at which the Likelihood ratio diverges.

The above derivation of the entropy measure of approximation of a predictive density uses

only the predictive inference setup in the repeated sampling context along with the principle of
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sufficiency. Ile sufficiency principle is one of the few generally accepted principles in statistical

inference. Various repeated sampling principles have been formulated, however the difficulty has

been the choice of an evaluation criterion for comparing various sampling distributions. The

entropy measure gives a criterion that is based upon basic statistical principles of inference.

2.2 The Use of FAUbpy In Shtadcg Inaeim

The entropy measure of error in approximating a predictive density is very general and can '4

be applied in diverse modeling problems. In this section, some of the general model selection

problems are described which include the nonnested multiple comparison problem, adaptive time

series analysis of changing processes, and optimal small multivariate methods.

From the derivation of the entropy measure, it can be seen that the entropy measure has a

number of very attractive features:

" It applies to completely general modeling problems including non-
parametric methods.

" It applies exactly to small samples.

" Only the fundamental statistical principles of sufficiency and
repeated sampling are used.

" It applies to time correlated problems such as time series model
identification and tracking.

" Statistical inference can be fundamentally viewed as model approxi-
mation.

Note also that the predictive distribution can include an entire model structure-

determination/parameter-estimation scheme by setting

Pk(Y1 X) = P(Y .6f.)(X)) (2-7)

where for every z, i(z) is the k minimizing a model structure determination criterion. Thus for

each a, p. can be regarded as a model fitting procedure including the choice i(x) of model struc-

ture.

The negentropy measure is entirely applicable to exact small sample inference, system iden-

tification, and detection of abrupt changes that include decisions among a multitude of

parametric model structures which may be nonnested. Several predictive inference problems

have been considered in the literature. Previous work has used the negative entropy measure in

much more restricted formulations where
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* the informative and predictive samples were assumed to be indepen.
dent (Aitchison and Dunsmore (1975), Akaike (1973)) which does
not include the time series forecasting problem

0 the use of the negative entropy measure was considered as arbitrary
(Aitchison (1975), Murray 1979)) or justified only asymptotically for
large samples by heuristic arguments (Akaike (1973))

0 the negative entropy measure was justified as a bass for comparing
distinct parametric model structures (Akaike (1973)), but not for
comparing model selection procedures which include choice of the
model snructure (Larimore, 1983)

0 only the case of nested structures such as autoregrmssive models
were justified (Akaike (1973)) although there has been wide spread
application of it to the general nonnested case such as ARMA
models

0 the previous Literature on the use of information theory in statistical
inference justifies its use by arguments of information transmismon,
a set of postulates supposed to be obvious, or by analogy with
entropy in statistical mechanics none of which are convincing from
the point of view of statistical inference (Kendall (1973), Hart
(1971)).

Thus the results of Larimore (1983a) give a solid theoretical justification for the use of the nega-

tive entropy measure in a general setting which makes posible the further general development

of predictive inference statistical methods.

For the parametric cam, the very general considerations above simplify somewhat. For the

structure determination problems, an estimator of the form as in (2-7) associates a parameter esti-

mate i(z) with each pomtbe value z of the sample space. To simplify the discussion in this sec-

tion, we can cosider that the informative experiment x (fit set) and predictive experiment y

(check set) are iapdeady ad identically distributed K-dinensional vectors. In Section 4, the

genera depMdent time series analysis can will be discusied. We predict the density of y by

p(7,i(z)) where P(Y,0) is the parmetenamd clam of densities for y. The negative entropy meas-

ure (24) -mdecm in d pramntc case to that uAglmstd by Akaike (1973) and is expremible as

R(.) -E. (p./) - E, f .(6..) o- (Y() X (2-8)

where * desmoes d true value of the parameer 0 Sad where E, denotes expectation with

respect to 68 adornave sMnpie I Mat the emmatr i(s) may involve different model orders

or SU wes u is (2-7) s SO cOOceX.. ddficulty AlthOUO it may complicate the evaluation of

the ms PuuA (24). no predmctive a se ce ick set) is emer actually drawn, but we wish to

dev decio procedures wh ck . id apmally predict in terms of (24).
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The major statistical problem is to devise model-estimation/structure-determination schemes

which come clse to moinizn the negentropy. A major step in that direction was made by

Akaike (1973) in proposng an extension of the maximum likelihood method to compare different

model orders or structures. Suppose that ik(x) is the maximum likelihood estimator for a given

restriction of the parameters S to a subspace Hff that is defined for every x in the sample space.

Then we wish to partition the sample space into the disjoint subsets X5 so that for x (X, the esti-

mator

=(Z) for X (2-9)

is used. Akaike (1973) shows that asymptotically for nested models, an unbiased estimate of the

negentropy using the maximum likelihood model ik (z) for the whole sample space z ( is given

by the Akaike information criterion (AIC) defined by

AIC(k) = -2tnp(x,+(x)) + 2K(k) (2-10)

where K(k) is the dimension of Hk, i.e., the number of parameters estimated. The Minimum

AIC Estimate (MAICE) proposed by Akaike (1973,1974b) is to partition the sample space so that

X4 is the set of sample points for which

AIC(k) < AIC(j) for j = k (2-11)

Then the MAICE estimate is

SMAICE(X) = k(Z) for X XI (2-12)

so that on the set Xk, 6, Aci(x) is the maximum likelihood estimate ijk(x) corresponding to the

model structure k with minimum AIC.

For autoregresive models, Shibata (1981a) has studied the MAICE and other asymptotically

equivalent procedures for model-estimation/order-determination. He adopted a spectral measure

of accuracy that is asymptotically equivalent to the negentropy. He showed that asymptotically

for large sample, MACE minimiz s the negentropy measure of accuracy (2-8), which will be

called avropy tficiek'y. Hence MAICE is asymptotically an optimal procedure for choosing

autoregreuive models. Shibata (1981b) also shows MAICE as asymptotically optimal for regres-

sion problems which involve nonnested multiple comparisons. Other procedures for model order

determination have been proposed (Bhansali and Downham, 1977; Schwarz, 1978) which

emphasize the choice of true model order asymptotically for large samples, which is called order

consin..cy. In most real problems the true order is infinite, and even if such a fiction were to

exist, a predictive criterion is much more intuitive in most applications. Shibata (1983) has shown
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that order consistency and entropy efficiency are mutually exclusive so that a choice is required

as to which of these criteria is most important. In particular, Shabata has shown that an order

consistent procedure cannot be entropy efficient, and that an entropy efficient procedure will not

be order consistent.

Turing now to a different general problem, that of exact small sample inference, predictive

inference and entropy provides a new approach to the problem. Pat approaches to the small
samp-- ,erence problem have involved a number of ad hoc procedures. The entropy measure

provides a sound fundamental measure of the approximation error in predicting the density of the

future experiment. One of the past approaches has involved the eau aive nuhod where the

predictive density is restricted to lie in the clan of densities asumed to contain the true. Recent

results have shown that the use of more general predictive densities can give more optimal results

a measured in terms of the entropy measure of model appyoximtion error (Murray, 1979, 1977;
Aitchison, 1975). The optimal predictive density has been derived in the class of invariant densi-

ties minmiing the entropy measure. This was derived before the justification of the entropy

measure besed upon the sufficiency principle. As shown in Chapter 6, this more general and

optimal predictive density can be considerably better as measured by the entropy.

In time series analysis, the advantage of the approach using predictive inference and entropy
is that it provides a sound theoretical framework in terms of model approximation for the direct

comparison of very general time series analysis models including:

" Consideration of many complex hypotheses

" Comparison of nonnested hypotheses

" Comparson of dynamic models of different dynamic (state) orders

" Consideration of models fitted over different data sets for detecting
abrupt changes

" Consideration of different adaptation rates for doing optimal model
tracking

The comparison of such diverse models is inherent in adaptive time series analysis and abrupt

change detection, and previous investigations have not had available such a sound and general

framework for solving these difficult problems.

,r _ , , ,' , ', , , .-' -".% '-- '"-"" "' " " ".;.-''-' -'#-" '" '" '.".",/ .'- 5" ' " .%." a' " -"-" ' .' , '- "'-' -" ' ."- 'I



3. COiNRAND NONNESTED MULTIPLE COMPARISON OF MODEIS

In this chapter, the general problem of nonnested multiple comparison is considered. In

order to develop a general theory, consideratio is restricted to comparing models that are the
result of constrained maximum likelihood estimation. The objective of the discusion is to gen-
eraliz the currently available procedures for nonnested multiple comparion in the constrained
maximum likelihood context.

The approach is to view the fitting of each altemnative parametric model form as an approxi-

mation procedure, which includes the notion that the true model is in general not contained in

the clm of parametric models considered in the model fitting. This s a departure from peviou
appres that involve primarily asymptotic arguments where the parametric models approach

the true model as the temple sin becomes large. Such an asymptotic argument bep the question
of model apoxmtion since ay there is no error in the appxmtion. It is very
important in practice to determine the extent to which the asymptotic pp matio are accu-

rate in moderate or suall samples.

Another area of weakness in available approaches is the assumption of nesting in comparing

models using entropy methods. The derivations of Akaike involve the assumption of nested
models which considerably restricts the applications of the methods. In practice, the AIC cri-
terion has been applied in a much wider context than the comparison of nested models.

The results of this chapter will provide the basis of much more general decision procedures
for adaptive time series analysis. In these problems, the comparison of different models based

upon different intervals of data are compared to determine if an abrupt change has occurred.
Previous entropy methods have only compared different models for a given interval of data.

3.1 Ce.d M LUbs.ei E ae

The first rest to be discused is the generalization of the usual maximum likelihood theory
to the constramned cam. The regular case is consdered where the log likelihood function is
expandeble in a Taylor series (Cox and Hinkley, 1974, p. 281). These conditions permit the inter-
change of expectation and differentiation.

Following the notation of Lanmore (1966d, contained in Appendix A), let L(z,) denote the
log likelihood function of the informative sample x considered as a function of the parameters 0.

Denote by 8 the expectation with respect to the true density p(zj) with true perameter . The
negative entropy measure is used as the measure of approximation to the true density by an
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appoxmatngdensty p(z,0) with parameter value Ok from the subspace eh of parameters. The
prejectimu it of onto the adabsce 9k is defined as the parameter value e minimix

so that the projection fesatisfies the condition

EI(j)- 0, (3-2)

where' denotes the derivative with respect to 01. The mninimum is unique if and only if the Hes-
sian Dk given by D)2 - El"(z,P) is positive definite. Thus for a constrained class of models, the
projection of the true parameter value defines the best approximation to the true density in the
class of approximating densities.

Consider now the constrained maximum likelihood estimate V' in the subsee of perame-
ten 0, satisying the likelihood equation

I'(z,i#) -o0 (3-3)

Then under the regularity conditions, we have for a positive definite Hessian Dk and asymptoti-
caily for large informative sample x that

0 &isan unbiased estimator of ik

0 the estimation error covariance matrix is
E(-X - _ (DkF 1E{L'(zjk,i'(zji')KD:4y (3-4)

For the unosrined cas, the middle term is the Fisher information matrix and is equal to
minus the Hessan e, but in the general constrained cmn this is not true.

Now consider the likelihood 10l z ,S) of the predictive experiment y conditioned on the
informativi experiment z . From the above results, the negentropy can be easily determined.
Expending the log likelihood to second order and taking expectation gives the negative entropy as

whih hldsasymptotically for large informative semple. Noet ah second temis exact (with

DO aprxmation in innall samples. The first term is an appoximation involving the variation ofI
the maximum likelihood estimate locally about the projection I'.Tus the bias pan of the error
in constraining the model is captured exactly.

lax Ma
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3.2 Wbml dhM d~. SNOWp

in the previous discusian of entropy, the measure is considered as a measure of approxima-

tics error beeen the true and approximating density. In practice, the true density is unknown

and it is desired to obtain an estimate of the negative entropy based upon the observed informa-
tive sample. To simplify the discussion, the case of z and y independent is considered. An accu-
rate estimat of the negative entropy was first obtained by Akaike using the log Likelihood as an
estimate of the entropy with a correction for the bias. The Akaike information criterion (AIC)

AIC(k) - -2Iop (z,(z)) + 2K(k) (3-6)

was derived as an unbiased estimate of the entropy where K(k) is the number of parameters
adjusted in fitting the mauinum likelihood estimates. The second term adjut for the bias in
estimating the entropy using the informative sample and adjusting the parameters in fitting.
Akaike (1973) originally derived the AIC as an unbiased estimate for the relative comparison of
the prediction error in comparing two nested models. The nesting is also important in that
derivation because the models are not only nested but asymptotically approach the true model.

In the more general case of constrained maximum likelihood estimation, a difficulty occurs
in the estimation of the negentropy. Consider as above the case of z and y independent and
identically distributed. As derived in Appendix A, the expected log likelihood difference of the
informative sample is

EfI(xj) - (xb")J = -,r(D t)'-{J" T( ,i)j'( 1 ,jt)) + R,(i,&) (3-7)

In the unconstrined case, asymptotically for large informative sample the trace term is equal to
the number of parameters estimated. Unfortunately in the general constrained case, the Hessian
is not equal to the Fisher information matrix. The trace then depends upon the expectation with
respect to the true unknown density of the first and second derivatives of the log likelihood func-
tion at the projection P. This cannot be computed in general since the true parameter is unk-

nown.

In came where the Hemian and Fisher information are equal so that the trace is equal to the
number of parameters, then two different parametric model structures, say ek and 91 can be com-

pared using (3-7) as

E[l(z,k) - I(z.')J - - dim(e) - dim() + R(i,6') - R(6#) (3-8)

which is equivalent to the ARC. The denvation for constrained maximum likelihood estimates

makes clear some of the amumptions La previous entropy methods. The major difficulty is caused
by the variation of the Fisher informauoo or Hessian as the parameter values change. In the
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derivation above , the issue of nesting does amt Aris.

In the case of nested tests, the mAIcE criterion reduces to the urni generalizd likelihood

fado MRL) test- The threshold aNd resulting probability of rjct the null hypothesis, ie. the

sie c' the test, depends upon the number Of adona paramoeters in the more genera model.

In comparing two hypothese H. and H1I, the MIC criterion is to choose according to the

sign of the quantity

AJC (He) - AIC (H) -21o6 )s+ 2[kr(0) - kr(l)j (3-9)

P (z ,6')

The AC criterion in the nested cas is equivalent to the decision rule

cheese HO if-2ogh < 2[9(1) -k()]

cheese H I if -2logk It 2[Kr(1) - K(O)] (3-10)

where the g.,Wudo Mdklioed ratio X is defined by

p (z AU'

TIe threshold 2(1() - K(0)I is precisely twice the number of additional parameters under the

hypothesis MI.

In the case of a normal class of densites, t uin aof the tean is easily determined since the

GLI Statistic 1% is chi-Squared, on K(1) - Kf(0) derees of freedom under the null hypothesis Mo.

T7hus a is given as the solution of the relasionsip

X!., -2A (3.12)

Were X is the uber of additional parameters and X!. Is theea probability point of the cumula-

tive chiauaried distrbution on a degrees of ftmreedm. Solving for a a a function of x gime the

sieOf the test aw a function Of the number is Of additional paameters a shown in Tabw 1. Note

that the traditional a leves Of 0.10, 0.05, 0.01, 0.00 And 0.001 correIond respectively to about 4,
S.,16, 20, and 30 additional paraimeters. It has been known for a long time that in composite tests

Or rePGate apcation of simpl additions of a singl varibl that the sgnaificance level is con-

sider ably reduced such as in mep-WISe repehmon1. The entropy approach makes explicit the

change in the siz a of the test with the number of additional ernimated paametr.
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Number a df
Addlkiad 1 2 3 4 5 8 11 16 20 30

Prbability e of
Rejecting Null 0.167 0.144 0.115 0.094 0.060 0.043 0.024 0.010 0.005 0.0006

Hypoedk ed

Table 1. Deedw of Significance Level a on the Number x of Additional Paamtrs

dale','.' , ,' -, / . ','",,.".,," " , . ." . , "; :'- """ ":"



4. TUM SM ANALYSIS USING ENPMOPY WFHOD6

hethods of predictive inference and entropy offer a number of advantages in the analysis of
time series not available in other methods. In this chapter the basic time werits analysis methods
are described, while in the following chapter adaptive methods for time series analysis are
developed using predictive inference and entropy. First the topic of the achievable accuracy of
spectral analys is addressed by relating the entropy measure directly to a relative squared error
in estimating the power spectrum. Following this is a discussion of the Markovian repicsentation
of time series in terms of state space models which will be very useful in represnting time vary-
ing models of time series. The canonical variate analysis approach to time series is then described
which form the basis of the adaptive tam series analysis methods developed in the followung
chaper.

4.1 Achievable Spectral Accuray

In this section, the informative and predictive samples will be denoted by v and v respec-
tively to allow for the traditional use of x and y for random processes. Consider the problem of
identifying a model for a pair (z,,v,) of multiple stationary time series where z, and y, ar ezo-.
genous and endogenous time series respectively. Consider linear stochastic models in the form of
a linear difference equation

yg- q+ hQt-r-)x, - qj + rg 41

where hAr 9) is a causal linear system giving the response in y, to the past exogenous inputs x,
and where q, is white noise. Suppose that the probability density of the proces is parameterized
by 0. The ezogeaus varibl z, will be considered a exactly observed, and the problem of
modeling y, comidamal on;x is considered so that prediction of y, from z, based upon mach a
model is the peaIp problem. is also includes the problem of no exogeous variable so that

a.
only yo is observd

We wish, to investigate the achievable accuracy in estimating a model for the prace.. In
particular, th entropy measire will be developed to obtain the relationship between the number
of paraeer.a estimat in the model and the relative squared error in estimiating the power spec-
truam. Asn mmpale ilustrama the effect an the spectral estimation error due to the particular
clew of parametric models used in the identification and the number of parameters estimated.
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The predictive inference setup of Chiapter 2 is considered where the primary interest is in
the -a*mp- tic behavior with large sample sin of both the informative and predictive samples.
Coodsder an observed informative sample v'(zM'. .. g) of sizeN used to estimate the
peg ce model, and similarly consider a conceptual predictive sample Y of sinm M used to evaluate

the accuracy of the estimated model. The predictive sample is assumed to be identically distri-
bated but independent Of the informative sample. Consider the problem of inference on the
parametric classpveE of models with probability densities p(v ,O) basnd upon the informa-
tive sample a. Cosdr the conceptual repeated sampling experiment where on each trial the
samples u and Y are each drawn independently fron the process S(*J,) with i assumed to be the
true parameter value. An estimative model A-t p (v A(v)) is chosen for the density of Y by some
parameter estimation scheme i(m) . For a stationary proces-, the negative entropy (246) is linear in
the predtve sample s M, so it is more useful to consider the per sample negmnuropy. To this
end, define the p.r sowpe waropy denoted I (so j0). As derived in Appendix B. the I-

divrgnc is given asymptotically by

I(-)- E p(vtP('. dy
6(*U))

1 i do
+2 Es fiw{i'M[H(0) - 11(N)PJ (XH (4) - 9 hW)r)- (4-2)

where E, denotes expectation relative to the informative sample v.

In the multiple time series can, the spectral measure (4-2) has an intuitive interpretation in
term of principal components of the power spectum in the frequency domain. Principle com-

pomesrersettin of the spectral matrices S,,(w) and S.(*) have the form

J(w) S,(w) J() - D(w) , L(o) S=(o) C(o) - E(o) (4-3)

where 1(u) and L(a) given as a function of frequency o are unitary matrix 1 anformations so
J(*)I(*)"'I-L(i*)L(o) which diagonalim S3 (o) and Sqv(*) respectively and where D(o) and

E(u) are diagonal matricies. Filtering z(t) with transfer function L(a) gives the principal coin-
poem p rce--1(Q) which is expressed in the frequency domain as i)Lwkw),and which
ha the diagonal spectral matrix E(w), and similarly for q(t).

The spetral memstre (4-2) is shown in Appendix B to be
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p ¢~P - . 6.0#) - € . ~) d1.1 (o.)I d
aw. 4 jI -w 22o + . - - '*6j o 4w

* .. a ..) .. q~ 1 ~Jj

+2 .D* Iv d (4 4)
2 f 1 dJ(.) - GJ(..)1 'E(.,)j 2v,(+

Te first um n the riht hand side is the integrated squared relative error of the emmated cos-
pectra of the principal components, while the second term is the integrated squared coherency of
the eujumed specurum 6(a) which would be wr if D(.)-D(a). Thus the measure (4-2) has a
Clar iner in the multivariate cam when the true spectrum D(o) is diagonal but where

the aplspimating pectrum L(o) is permitted arbitrary coherency among components. The third

term in the specal measure (4.4) is asymptotically equivalent to replacing S.(o) by S 3(o). This

term i invariant to the unitary transformations ,(w) and L(w) where G(*)-J(W (4),(w) is the
-9a1 1 function H(o) expressed in the coordinate frame of the pincipa component series ()
and i(). The squared magnitude error I dy (o) - Gjj() 2 in the ij element of the transfer func.

don is weigMd by the input signal to output no.. raio D(.) 11IE(u)jj for the pair (ij).

The qectral measure of accuracy can be bounded in terms of the number of parameters
estimated. Suppose firs for simplicity that the parametric class of models contains the true pro-
cen and that k parameters are estimated. Then by Appendix B using the Cramer-Rao lower

bound, the per sample neguntropy is bounded by

1. 1 kE (sj) - E.. - o r(i - o) a- - tr-IF- (4-5)

with equality achieved asymptotcally for large informative sample N. This implies the bound on

the achievable accuracy in qectral estimation given by

k isI

+ .-j e. fssr{.-'H(a) - .()(a)H(u) - I(-)r)LO" (4-6)

In the more general case where the order is infinite and the MAICE procedure for choosing

model order k is used, then Shibeta (1963) ba shown the following result. For each informative
sample sin N there is an optimal order k" (N) which minimizes the tradeoff between variability

and bias in the entrop meamu

- + + (i ) (4-7)

R(6,+) -- II#-#'l Z e~i, ) -. -



4-4 '

Then asymptotically for large informative sample N, the negative entropy of the MAICE model

selection pocedum is exactly that of the model selection procedure using a fixed number of

parameters equal to the optimal order k*. Thus even in the case of using an entropy efficient

model selection procedure where the true model order is infinite, the achievable accuracy of

specmd estimaon (4.6) can be bounded by the function (4-7) of the sample ae N with k -k

To illustrate the use of the lower bound on the achievable accuracy, consider the ARMA

(43) oc

- 13136 y-1 - 1.4401 y)-2 + 1.0919 Y,-3 - 0.327 y,-4

+ w, + 0.17921 w,-, + 082020 w,_2 + 026764 w,-3  (4-8)

with the n6ise variance of w as Q - 1.7238x10 "2 . This process was analyzed by Geruch and Sharp

(1973) and Akaike (1974b) to show the increased accuracy of ARMA models over AR models.

For a sample siae of 800, the optimal order was found to correspond to k - 18 for fitting an AR

model to the data. Akaike (19741) fitted several models to simulated data using AR, ARMA,
and Hanning window methods. Figure 1 shows the variability term of the spectral error as a

function of frequency for the various model fitting procedures. Since the optimal order was used

for the AR model, the bias is also included. The ARMA model has no bias sinc the fuln order is

chosen with high probability. On the other hand, the Hanning window has significant bias since a

fixed bandwidth is used to spectraUy smooth the data at all frequencies, and this bandwidth is not

sufficient to estimate the sharp peak without bias. Use of a wider bandwidth would increase the

already larp error at all the other frequencies. The AR and ARMA methods are clearly adap.

tive in that the methods have a preater bandwidth to accommodate the rapid changes (large

second derivative or curvature) near the peaks and troughs but lower bandwidth in regions with

low curvature. The greater parametric efficiency of the ARMA method is clearly depicted in

then regions of low curvature. Repeated simulation of the time series data from the ARMA(4,3)

model and the maximum likelihood estimation of ARMA models with MAICE confirms that the

lower bound indeed gIva am accurate description of the spectral estimation error in practice (Lat-
imore, ldahmood, and Whsam, 1964). Independent methods have been developed for obtaining

simultaneous confidence bands on spectral estimates (Larimore, 1986c). Such confidence bends

ar propowional to the integrand of the spectral measure of accuracy so that the integrand gives

an accurate measure of spectral error at each frequency as well.

lie.
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Figure 1. Spectral Accuracy of Different Model Fitting Procedures (lower curves) in Approxi-

mating the True Spectral Density (upper curve).

4.2 MWk.TI. Modi oft 7l=e Sails

In this section Markovian or state space models of time series are reviewed. Such models

have not been widely used in time series analysis, although there is wide spread use of such

models in filtering and prediction with numerous applications in engineering. State space models

have a number of advantages in time series analysis that are attractive for automatic implementa-
tion on -'-r N ocms using the canonical variate analysis method discused in the next section.
Such procedures allow the automatic selection of model sate order using entropy methods and
lend themselves to adaptive methods for time varying procemues discussed in the next Chapter.

The staring point of any approach is the joint probability distribution of the pat and future

oburvazm p (f, ̂ ,O) where p, are the pea inputs u, and outputs y, up to time t and f, are the

outputs y, in the future at time # defined by

I

F
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and 0 is a vector of parameters indexing the model. A fundamental property of a Markov process

of finite state order is the existence of a finite dimensional state x, which is a linear function

x8 = cp, (4-10)

of the past p,. The state x, has the property that the distribution of the future f, conditioned on

the pa p, is identical to that of the future /, conditioned on the finite dimensional state x, so

p (f, I p,,O) - p (f, I ,,O) (4-11)

Thus, only a finite amount of information from the past is relevant to the future evolution of the

process.

A stationary Markov process of some particular state order can be represented by a vector
difference equation with the general form (Lindquist and Pavon, 1981)

x,+I =OX,+ Gut + W, (4-12)

y, = Hx, + Au, + w, + , (4-13)

where u is an input vector process, y is the output vector, x is the state vector, and w and v are

white noise processes that are independent with covariance matrices Q and R respectively. The

matrices 0, A, 8, G, and H determine the dynamics of the process and correlational characteris-

tics of the disturbances. The various matrices are considered as functions of the parameters 0

specifying the process. The white noise processes model the covariance structure of the error in

predicting y from u.

For time series analysis and system identification, the parameterization of the model is an

important issue. The elements of all of the matrices of the state space model (4-12) and (4-13)

and noise covariances are not independent parameters of the model. In fact for each distinct pro-

bability distn'buon there is an equivalence class of models of the form (4-12) and (4-13) with the

same distrilutio. It can be shown (Candy, Bullock, and Warren, 1979) that the number of

independent parameters is

K (k) =2kn +n (n +1) 2+km +nm (4-14)

where k, P, and m are the vector dimensions of the state x, outputs y,, and inputs mi respectively.

If there is no instantaneous feedforward so A =0, then the term mm is deleted, while if there is no

input so A -G -O the terms kmi+nm are deleted.
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The sM qice pameteriation (4-12) and (4-13) is not unique, however in the next section

a well coodtiomd procedure for selecting a unique model for the equivalence clan will be

described. For an individual state space model there exists a corresponding ARMA model and

visa vern. However the two clases are not equivalent as clames. In general there is no ARMA

clas of models equivalent of a particular state spece class. The ARMA clas has one major diffi-

culty - there is no global parameterization of the state space models of a given order. The diffi-

culty is in the ARMA representation which becomes singular at certain models such as one

involving the cancellation of a pole and a zero. This causes great difficulty in numerical methods

in attempting to automatically identify higher order models which may involve such cancellations

of poles and zeros.

The major advantage of the state space models is the availability of efficient and numeri-

caily well conditioned procedures for model identification discumd in the net section, and the

explicit Markov sructure allows for the the development of direct adaptation procedures

developed in the next chapter.

43 Caneica l Varlate Analy of Time Swim

The canonical variate analysis method for identification of state space time series models is

described in this section. The methods for the determination of the state order and selection of

the state using concepts of canonical variate analysis are first discussed. The determination of the

state space model is then computed by simple regression. The computation involves primarily a

singular value decompostion of the sample covariance matrix of the process.

A generalization of the canonical variate analysis method has recently provided a completely

general solution to the static reduced rank stochastic prediction problem which is well defined

statistically and computadonally even when some or all of the various covariance matrices are

sinular (Larimore, 1986b). All other previous methods in the statistical literature do not address

the general problem. Iis result is the foundation of the time series analysis methods using

predictive inference and entropy including the adaptive time series methods.

The original development of the canonical correlation analysis method of mathematical

statistics was by Hoteling (1936; see also Anderson, 1958). The application of canonical variate

analysis to stochastic realization theory and system identification was done in the pioneering work

of Akaike (1974a, 1975, 1976). This initial work has a number of limittions such as no system

inputs, no additive measurement noise, substantial computational burden involving numerous

SVD's, a heuristic set of decisions for choosing a basis for representation of the system, and a

* number of approximations including computation of the AIC criterion for decision on model
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order.

Some important generalizations and improvements in Akaike's canonical correlation method

have recently been made by Larimore (1983b). These include generalization to systems with addi-

tive measurement noise and with inputs including feedback controls. A major departure of the

approach from previous work is the use of a single canonical variate analysis to optimally choose

k linear combinations of the past for prediction of the future. The very natural measure of qua-
draticaily weighted prediction errors at possibly all future time steps is used. Formulated as such

a prediction problem, it is shown how a generalized canonical variate analysis gives the solution

explicitly. The interpretation of canonical variates as optimal predictors is central in motivating

interest in such a problem formulation and is scarcely found in the statistical Uterature (Larimore,

1986b). The optimal k-order predictors are not in general recursively computable, but the

optimal state-space structure for apprmimating them is expressed amply in terms of the canonical

variate analysis. The problem of finding an optimal Hankel norm reduced order model (Adam-

jan et al, 19171; Kung and Lin, 1981) is related to the canonical variate approach (Camuto and

Menga, 1982; Larimore, 1983b). The balanced realization method is a particular case of the gen-

eraLized canonical variate analysis (Desai and Pal, 1984).

To more concisely discuss the canonical variate method, the results in Larimore (1983b,

1986b) are briefly reviewed. Consider the problem of choosing an optimal system or model of

specified order for use in predicting the future evolution of the process. As in Section 42, con-

sider the pas p, of the inputs u, and outputs y, before time t and the future of the outputs y, at

time t or later so

T,- r.. .W .r, f r_(r+Iv

We assume that the processes u, and y, are jointly stationary and denote the covariance matrices

amongf, and p, as1 1 , I,, and If.

The major interest is in determining a specified number k of linear combinations of the past
p, which allow optimal prediction of the future f,. The set of k linear combinations of the past

p, are denoted u a k xl vector #N and are considered as k -order memory of the pas. The

optimal linear predictioa , of the future f,, which is a function of a reduced order memory m,

is measured in terms of the prediction error

E{Ilf, -/,11 E;} = E{(f, -1) f ZJI(f, _I,) (4-16)

where E is the expectation operation and t denotes the pseudoinverse of a matrix. The optimal

prediction Ooblem is to determine an optimal k-order memory
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0, - Jot, (4-17)

by choosing the k row of J, such that the optimal linear predictor f,(m,) based on., minimi-,s

the prediction error.

As derived in Larimore (1986b), the solution to this problem in the completely general case

where the matrices Ilf, I.., and ZI! may be singular is given by the generalized singular value
decompoitiom a stted in the following theorem.

Theu. 1. Consider the problem of choosing A linear combinations , - jP, of p, for
predicting f, such that (4-16) is minimized where ;, and If are possbly singula poitive gem-

idefinite symmetric matrices with ranks X and;; respectively. Then the existence and uniqueness

of solutiom are completely characterized by the (Zw, ,,).generalized singula value decomposi-

tion which guarantees the existence of matrices J, L, and generalind singular values y, "

such that
jz r r  - Ij , J = 1; , r -_ ( -...= (,.o .... o) 4 )

The solution is given by choosing the rows of J as the first k rows of J if the k-th singular value

satisfies -f. > 'v 1. If there are r repeated singular values equal to "yf, then there is an arbitrary
selection from among the corresponding singular vectors, i.e. rows of J. The minimum value is

min Ii,-,Ii, =(1-7y1)+ +(1-y) (4-19)
,(J,,, J, ) -k I1

This result not only gives a complete characteriztion of the solutions in selecting optimal
predictors f from the pas p, for prediction of the future f,, but the reduction in prediction

error for all poible selections of order k is given simply in terms of the generaized singuar
values. This is of great importance since it avoids having to do a considerable amount of compu-

tation to determine what selection of order is appropriate in a given problem.

The ganeralid CVA method allows the determination of the fit of the various gate space
models and the selection of the best model state order before computation of the state space
models. Consider the general cae of identifying a state space model: given the past of the
related random proces u, and y, we wish to model and predict the future of y, by a k.order

state-space structure of the form (4-12) and (4-13)

s* - OX, +Gu, +w, (4-20)

Y, - Hz Am, +0WS +v, (4-21)

-" " "- ."-..--- ", ' -- -- 'v '-.-.'-, ",.'r'., ,- . ".r p ".- . - .". r d ., "J € " W d
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In the coputaatlsa proble. given finite data, the past and future of the priocess arm taken to be
finite of length d lags so

Akaike (1976) proposed choosing the number d of laM by least squarest atoreri sa ndVV modeling
using recursive least square algorithm and choosing the number of lap as that minimaing the

MIC criterion discussed below. This insure that a sufficient number of lap are used to capture
ali ol the mtatiticaily significant behavior in the data. This procedure is easily genralimd to
includ the cas with inputs %~. The generalized SVD of Theorem 1 determines a rnrato

J of the pest that put. the state in a canonical form so that the memory m% ip, contains the

mte ordered in terms of their importance in modeling the prom1,e-. The optimal memory for a%

$Wme order k than corresponads to selection of the firmt k sates.

In order to decide on the model order to select, the Akraike information criterion (2-10) is .
computed where the number of parameters is determined from (4.16). Once the optimal k-ordar
memory in, is determined, Uate-qpace equations of the form (4.22) and (4.13) for ap;rmmtn

the p rce-- evolution are easily computed by a simple multiple regression procedure (Larimore,
1963b).

Since the CVA symtem identification procedure involves the mtate space model form, it has
the major advantage that the model is globally identifiable so that the method is maicaily well
conditioneod in contram to ARMA modeling methods (Gevers and Werta 1962). Furthermore,
sinlce the copttosare primarily a SVD, they are numerically mtable and accurate with an
upper bound on the required computations (Golub, 1969). Thus the method is completely reliable. .I

It has been demonstrated a mch in the time series analysis software Forecast Master that is comn 1

mercially sold by SSL. From the theory of the CVA method (Larimore, Mahmood and Mehra,
1964), it can be shown that there are no difficulties such as biased estimates caused by the pre- *
ewe of a Orelalsod feedback signal. The CVA method was demonstrated in real time identifica-
tion and adaptive control of unstable aeroelastic wing flutter on a scale model F-16 aircaft in the
NASA Langly Transonic Dynamics Wind Tunnel in February 1986.



S. ADAPIVE TIME SERIS ANALYSIS

The state space model identification methods are developed in this chapter for adaptive time

asres analysih. The concepts of a changming Narkov process are first discumed along with con-

ceps of a piecewi constant model of the process that is constant over intervals of time. The

approach to adaptation to slow changes using predictive inference and entropy is described. This

leads to a model fitting criterion for choosing an optimal data interval that balances the decreas
ing sampling variability with incresing smple sim aainst the increasing misnodeling error due

to use of a constant model over an interval of data. In fitting models involving abrupt changes,

the models fitted over various intervals are compared to determine if an abrupt change has

occurred. Thws involves the comparison of models determined from data on different data inter-

vals in pmdicting the error on a different interval. Several examples are given in usng the pro-

cedure on changes involving the dynamics, noise excitation, measurement noise, and other

changs

Concepts of adaptive systems have been around since the 1950°s involving various senses of

adaptation. The present literature on the subject includes a number of methods such as recursive

computational schemes, exponential forgetting, lattice computational methods, etc., which have

certain knobe that allow tuning of the algorithm to accommodate changes in the characteristics

of the actual procesues. Reviews of these and related methods are contained in several recent

special imues of technical journals and books (Special lue on Adaptive Control, Automatca,

Vol. 20, No. 5, 1985; Special Issue on Linear Adaptive Filtering, WEE Trans. on Information

Theory, Vol. 30, No. 2, 1964; Honig and Meuerschmitt, 1964). While these methods do permit

some dgree of adaptation to proce changes, the methods of adaptation are ad hoc, and no

sound underlying statistical pincple for adaptation is proposed or demonstrated. As might be

expected, these methods can work poorly on certain cases because of the lack of a sound statisti-

cal bal.

In porticula, the recursive prediction error and lattice methods are convenient due to their

recursive form and provide an estimate at every observation (Friedlander, 1982a, 1982b, 1983;

Ljung and Soderom, 1983). Also, the recursive algorithms can be used for adaptation by

exponential weighting of the past data (Welistead and Sanoff, 1981; Irving, 1979; Evans and Betz,

1982). But the ratonal for exponential weighting has not been given a sound fundamental justifi-

cation, but is used larmely due to its ease of use. The choice of the exponential weight has been

ad hoc and susceptible to misinterpretation of changing noise variance levels as time varying

changes in the dynamics (Hagglund, 1993).
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Adaptation to abrupt changes has been largely discussed in the fault detection literature. A
comprehesive survey of fault detection methods is given by Wiilsky (1976). See also Mehra and
PeAchon (1971), Wlksy and Jones (1974), Wilisky (1980), and Isermana (1964). These methods
have a number of short commings in detecting changes in dynamics, computational ilicondition-

insg, and exceive computational burden.

The central computation of any adaptive algorithm involves the extension of methods for
identification of stationary time series. There are several difficulties with currently available
methods and software for the identification of system dynamics and noise characteristics. Current
methods include the seLf tuning regulator (SIR) (Liung, 1963; Astrom, 1973; Astrom et al, 1973,
1977), maximum likelihood estimation (MLE) (Mehra and Tyler, 1973; Larimore, 1981a), the
Box-Jenkins (BJ) method (Box and Jenkins, 1976), and a variety of heuristic approaches. The
current state of the art in both MLE and RI require that an analyst be involved in the procedure,
and the required number of computationa iterations is not bounded. The STR has been applied
succemully to simple processes, but is not completely reliable for general proceues particularly
when multi-input, mult-output systems are involved. In addition, the recursive prediction error
algorithm used in the STR requires a good initial estimate and so is not suitable for short data
where no apriori data is available. The heuristic approaches tend to be for special purposes and
are rather unreliable in general applications.

5.1 Mia ftw C " Pci

The problem of modeling changing processes involves primarily two types of changes

e changes that are slow compared to the data interval used for identif-
ication

" abrupt changes occurring infrequently compared to the data interval
used for identification.

f the changing proc e- changes too rapidly or the abrupt changes occur too frequently relative to

the data interval required for sufficiently accurate identification, then it is not poible to
separate the actual systm changes from the variability due to sampling.

Consider a time varying Markov process where the conditional probability of the future
given the past depends upon time i so

p(V, IIA s) -p~f, ,,a) (.1)

where the state, defined as linear combinations of the past p,, varies with time as

cope (5-2)

• : .,; "0 5, ,."v " ,..,. ., ' ,' ,,,,; ,, ., -,,,, ,,.,,"",,.,,,, , ,'. .-, . . .,,.,,......., ,.",",.'-."' ." '," " <"--,"--'. .% <. .-".,,
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In ordr to ezpm the time evolution of the state of a Markov proces in terms of a lymem of

sate 4 8 Oquams of the form

Xj t - *,xj + Gu, + w, (5-3)

y, - Hjx, + .A,, +8^ + v, (5-4)

where the various matrices are time varying, it is necessary and sufficient that the conditional dis-

tribution of the future f , conditioned on the mate x, have the form

P , Ate) - P (,f I #,,,ot) (5-5)

This condiionas eentialy that the information in the state z, for predictng the future f , is con-

tained in the state z,_1 delayed by one time step and the present inputs u and outputs y,. This

condition is satisfied by mo physical systems since the memory is stored as eneqy in physicaiy

describable sates. If the system changes abruptly, there may also be an abrupt change in the

input or a Large noise innovation v, associated with a significant cbange in the mat of the system.

Formulated in this way, it is apparent how the state spice modeling methods are particularly use-

ful.

In any modeling method based upon a finite sample of data, only a finite number of param-

eters can be determined which are much fewer in number than the number of data. Of the vari-

ous possible methods for modeling, the simplest and least presumptive is the piecewis constant

model which is constant over various intervals of data. Thus consider the model of the form (5-3)

and (5.4) with piecewse constant parameters 0,

x, +1 - + Gju, + w, (54)

y, - HA + A,% + Bw, + v, (5-7)

The oefficient matices 6j, G,, HI, A1, and 51 are functions of the parameters 05 which are con-

stant oan In harvld of time T, and change from one ime interval to another.

In the following sections, adaptve time series analysis methods are developed by considering

various hypotheses concerning slow and abrupt chan#es. The predictive inference and entropy

methods provide a means of objectively comparing the vast multitude of such hypotheses entailed

in the adaptive time series analysis problem.

K'
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S.2 A&Wtd 0 ft VU~dIW

The piobim df edptsda to slow variaion is primarily that of determining the length of

time Wnmmi oo we in the time varying model (54) and (56-7). Consider the division of a aection

Of data inot. 2swintervals of lenoo 2' samples were A and I are an integers. Then the various

)Rhyte can be congidered such as H1 : divide the interval into mabintervals of length 2'. For

each gablaterval Ij, for j.12..? suppose a ame pece model denoted M1 is fitted using the

CVA method with AIC used to select the beoa model state order.

By macceseive application of the Nlarkov property, the Joint probablty density of the obser-

vadioma coaditiosed oa ths initial sate is given by

2h
lor(Y. .Y 26I Y0,810 - Y'low(Y 1 I YJ1 ,01) (54)

where Of - (Of. 920) is the parameter vector for the compoite model consisting of ali of the

nmodel over the 2hsubintervals. This gives the log likeod as the sum of the condtional log

likelihoods on each subinterval.

Consider the entropy measure of the composte model %. Using the asymptotic approxima-

tion (3-5), the negentropy is

!- +(,~ + (. (,) (5-9)
2 2 -

wbere0 and 61 are understood to denote the parameters constrained under the respective

hypotheses, involving estimation of these models. Note that there is a tradeoff between the firs

term which increases with finer subdivison of the data and the second term which decreass as

the number of parameters is increasd with finer subdivisions of the data. A minimum of the

negentropy defines the optimum subdivision of the data.

To estimate the negentropy from the sample, the MIC is used. From the definition of AIC,

the AIC corqas to (9)is liven by

AIC(Y1 '. Y 2 '6") - YAJC(Y,') (5-10)

The optimal data leng*h is chosen as the Is minimauing the above AIC.

As an Mlustration of this scheme. it was applied to a problem in the 1978 Workshop on Spec-

tral Estimation (Gerhardt, 1971) in ewmatag theisaataeu frequency of a ins wave with

time varyin frequenicy in the presenace of interfereniceand random nois. The data were



generated by the euatiam

y(t) - 1000 ca(@(#)) + 100 cog (b(t)) + x(s) (.1

whens the sigal component has a time varying phase a(t) and the interference component has

phas b(t) with the insataneomus frequencies given in Figure 2,

dol SIGN %L
ISO--

160- - --

INTI FFH(ICE\

140

130
#A 116 44 02 04 04 056 064TIME

(SECONDS)

Figure 2. Instantaneous Frequency of Signal (solid) and Interference (dashed).

and where the mom i uiniformly ditributed with -100<a(i)<100. The participants were told to
estimare the liasaoafrequency of the signal which was observed in the presence of interfer-
enca and *oise.

Table 2 gives the peir sample AIC corresponding to the identified state space models for
each of the mbitemias used which were of lengths 16, 32, 64, and 128 samples. Also given are
the per sampl MICu of the composite piecewis constant models for samples of U2S. It is seen
that the subinterval lenph producing the minimum average AIC for ail of the data is 32 samples.
This wm thee -s the opimal subinterval length for modeling the inatnosfrequency.
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SAl9W NUMBER OF POTS IN DATA SUBINTERVAL
16 32 64 128

12.40
22

12.12 12.15
38

12.39
54

11.66 12.12 12.0670
12.37

86
12.64 12.52

102 
212.53

118
(12.25) 12.05 (12.17) 12.27 (12.16) 12.36 (12.36) 12.36

134
12.01

1.0
12.84 1226

166 12.66
182

11.52 12.03 12.29
198 11.86
214 11.98 

12.02
230

11.47
246

(12.05) 12.06 (12.03) 11.79 (12.17) 12.06 (12.40) 12.40262 12.03

278
12.25 11.82294
11.39

310
11.88 11.43 11.76

326
12.06

342
11.55 11.90

358
12.06

374
(11.74) 10.66 (11.70) 11.6 (11.78) 11.79 (11.75) 11.75

ALL DATA 12.02 11.67 12.04 12.17

Table 2. Valu of Par Sapl AIC for Subintervals of the Sample, for the Average of 128 Points
(,aad for All Dan.

• * '**• * e S • %. • * w o • * -. *.. • t o .. = • . • • . * -. . **w s, ' ~ • m t "v • "



5-7

The estimate o( the instantaneous frequency was chosen as the maximum of the spectrum

obtained from the CVA model fitted to the data. The estimated instantaneous frequency is given

in Table 3 a•ong with the other three best solutions obtained by the other participants in the

workshop.

SAMPLE TRUE WILEY AND WEINER ADAPTIVE MAXIMUM
TIME CARMICHAEL ET AL CVA ENTROPY

32 141.47 141.47 141.69 142.13 141.7
64 145.73 145.73 145.88 145.13 1462
96 102.37 152.37 152.69 15222 152.6
128 160.73 160.73 160.71 16185 160.3
160 170.00 170.00 17022 169.30 169.9
192 17927 17927 179.48 178.40 179.9
224 187.63 187.63 187.72 188.06 1882
256 19427 19427 194.33 193.90 194.8
288 198.53 198-53 197.83 19722 198.0
320 200.00 200.00 199.72 200.94 201.5
352 198.53 19853 197.89 198.35 1983
384 19427 19427 193.93 194.66 194.0
416 187.63 187.63 187.09 187.99 187.4
448 17927 17927 178.87 179.82 178.9
480 170.00 170.00 169.64 17021 170.0
512 160.73 160.73 160.11 164.0

Table 3. Instantaneous Frequency Estimates.

The best solution by Carmichael and Wiley (1978) uses a special zero crossing method that is

applicable only to pure sine waves so that it will not generalize to more general spectra.

The adaptive CVA method did about as weU as the best of the methods other than Wiley

and Carmichael, and much better than a lot of them. Note that the adaptive CVA approach
makes no asumptions about the form of the spectrum or the character of the time variation.

Also the adaptive CVA method is completely automatic, and in this example did not involve any
considerations by an analysis to determine the choice or modification of the computations. As

measured in terms of the estimated instantaneous frequency, the method did very well.

5.3 A&apim le nUt (bumu

The primary problem in adaptive time series analysis is determining if and when an abrupt

change has occurred. This problem reduces to comparing two intervals of data and determining
if the sme proce model is a better description of the observations than a different model for

each interval of data. A complication of the problem is that the exact time is unknown and must
be determined from the data. Thus nvolves the comparison of a multitude of hypotheses con-

cerning the poible time of occurrence of the abrupt change. In addition, the ability to detect



the abrupt chamge depends upon the data length of the data intervals used. The best data length

for detection depends upon the type of abrupt change since some changes affect the observations

immediately and the effect decreases rapidly, while for other changes the effect on the observa-

tions takes some time before it is apparent. Thus the consideration of different data lengths
requires additional hypotheses to be considered and compared. The predictive inference and

entropy methods give a sound basis for the comparison of the multitude of nonnested hypotheses.

Consider the problem of determining if there is a change in the the process between two dis-
joint data subintervals. The detection problem considered is where the process is modeled as a
slowly changing process using some efficient procedure such as given in the previous section. The

notation of the previous sections will be used with subscript I or 2 corresponding to the data

intervals Y I from the pam slowly changing models and Y2 from the new data that is to be com-

pared for detection of an abrupt change. The subscripted parameters 61 and 2 with or without

other superscripts, hats, or tildes will denote models based upon the corresponding data interval.

The data lengths of the two intervals Y , and Y2 are generally different with the fr data interval

determined by the slow adaptation method and with the second set usually much shorter and of
variable data length since the best data length for detection of abrupt changes is not known. For

any selection of the two intervals, we wish to determine if there has been a significant departure
in the process characteristics between the two data sets.

Ideally, the hypothesis (01,82) that the models are different over the two subintervals Y, and

Y2 verses the hypothesis Oj that the model is the same over the joint data set (YI,YI) would be

compared. But this would involve a considerable number of comparisons. To avoid such numerous

compaisons, consider the following approximation. Let data set Y, be chosen as the most recent

optimal length interval preceding Y2 with corresponding model 81 which provides a near optimal

prior model YI. To detect any abrupt changes in the system, consider the approximation of using

the model 01 as an approximation to the joint model .

As discumed in Section 43, consideration can be limited to conditional models given the

pan or equivalently the initial state at the beginning of the subinterval. Using such conditional

models, the likelihood function reduces to

The model on the firs data set YI is the same for both the above hypothesis and the change

hyp oh W p(Y1,S"(Y 2,V. The entropy measure is the difference of the above two log likeli-

hoods which involves only the likelihoods on the second subinterval Y2 so that

R(G2,60 = E[lOp'(Y 2,01 - loP(Y2,82] (5-13)
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if the system in fact had an abrupt change between Y1 and Y2 , then since the data length Y is

much longer than Y2, most of the information in detecting the Abrupt change is in the comparison

of the two models O, and % on the data Y2.

The problem is now to obtain an estimate of the entropy measure (4-13) from the observa-

tional data. The observed log likelihood is used as an estimate of the entropy as in (3-7). The bias

of this estimate of the entropy measure is

-dim(0 2 ) + R(6,Y 2) - R(O,Y) (5-14)

where the term dim(&) in (3-8) is not present since the estimate P is a function only of the sam-

pie Yj which is conditionally independent of the sample Y2. Thus an unbiased estimate of the

difference of negentropies R(S,Y2) - R(i,Y1) of the two models is

(Y1) - 1(Y2) + dim()(5-15)

This gives a test for the occurrence of an abrupt change between the two data intervals.

Depending upon the nature of the change and the process characteristics, the best detection

interval will vary. Some changes give most of the information about the change over a short

interval while others have a cumulative effect and require a long time interval to detect.

Consider as an example of the procedure for detecting abrupt changes the ARMA(4,3)

model (4-8). Three types of abrupt changes were simulated including an abrupt change in the

dynamics, in the state, and in the variance of the excitation noise w,. The results of the pro-

cedure for detecting abrupt changes for the case of no change and cases of a simulated abrupt

change in the dynamics, the excitation noise, and the state are shown in Tables 4, 5, 6, and 7

respectively. In each case, the entropy measure for detecting the abrupt change was computed

over various intervals of data of lengths 50, 100, and 200 samples and the abrupt change occurred

at the sample time 325. In the case of no abrupt change, the entropy measure shown in Table 4

is on the average 0S186 with a standard deviation of 0.016. As shown in Table 5, the largest

value of the entropy measure is in fact in the interval samples 300-350 containing the time of the

abrupt change in dynamics. The following interval of samples 350-400 also indicates a large value

of the entropy measure. The initial large value in interval 300-350 is due to a transient in the

state as it settles to a new steady state vanance which is largely complete in interval 3504M. The

entropy measure then persists at this value in folowing intervals. The abrupt change in noise

variance shown in Table 6 has a different character. The negentropy changes abruptly in interval

300-350 and remains at that value in succeeding intervals. With an abrupt change in the state
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SANTLE NUMBER OF POINTS IN DATA SUBINTERVAL

TIMES 50 100 200

200
0.495

250 050
0513

300 0518
0.540

350 0534
0527
400

Table 4. Value of Per Sample AIC for Subintervals of the Sample with No Abrupt Change.

SAMPLE NUMBER OF POINTS IN DATA SUBINTERVAL

TIMES 50 100 200

200
0.495

250 0.503
0313

300 282 10214

28220

350 19.924
11.628

400__ _ _ _ __

Table 5. Value of Per Sample AIC for Subintervals of the Sample with an Abrupt Change in

Dynamics at Sample 325.

shown in Table 7, the departure is largely confined to the interval 300-350 although the transient
has not quite died out in the interval 350-,00.

In all cams there was.no amumption as to the nature of the change, and the procedure

works as well on state jump , changes in noise variances, or other changes. Note that the charac-

ter of abrupt change is quite different depending on the type of abrupt change that occurs. The

best detection of abrupt changes can only be achieved by an adaptive procedure that considers

the multitude of data intervals and selects a near optimal data length for detection. These initial

results on the adaptive detection procedure demonstrate that it is very sensitive to a variety of

different abrpt changes in the model.

,-.:.,'
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SAhaPLE NUMB3ER OF POEMT IN DATA SUBINTERVAL
TIMES so100 200

0.495
250 0.503

300 -51 0.579
0.653

350 0.m0.653

400 - _ _ _

Table 6. Value of Per Sample AIC for Subintervals of the Sample with an Abrupt Change in Ex-

citation Noise Variance at Sample 325.

SAMIE NUMBER OF POINTS IN DATA SUBINTERVAL
TIES 50 100 200

0.495
250 0.503

300 21.842
85.766

350 43.180
0595

400 _ _ _ _ _ _ _

Table 7. Value of Per Sample AIC for Subintervals of the Sample with an Abrupt Change in

State at Sample 325.

s.",



6. SMALL SAMPLE MULIWARIATE ANALYSIS

The approach to small sample inference in this Chapter is the use of the entropy measure of

model approximation error to evaluate the performance of small sample methods. This general

approach is based on the justification of entropy as the natural measure of model approximation

error as developed in Chapter 2. The historical Bayesian predictive inference approach plays a

major role in providing a computable predictive density which is subsequently shown to be

optimal in terms of the entropy measure. This optimality is established by considering best invari.
ant predictve densities. For the multivariate normal family, several predictive denitie are com-

pared with the best invariant to show the large improvements that are posible in small samples.

6.1 asys Prdlkdve I nefce

The historical approach to predictive inference involves the use of Bayesian concepts and

methods to determine the predictive density. Consider the parameterized class of probability den-

sity functions

F = (p(y.ri e).0e01 (6-1)

defined on the joint sample space (X ,Y). The predictive inference setup as in Section 2.1 is con-

sidered where a predictive density p.(yI z) is to be constructed as an approximation to the true

conditional density p(yI x,e) for the unknown parameter value 0. In the Bayesian approach, the

" predictive density is constructed on the basis of an assumed prior density p(O) on the parameters 0

using Bayes rule.

From Bayes Theorem, the posterior density of the parameters is given by

POWPz)' (6-2)

where the marginal density of z is

p(x) fp(Op(xI O)d8 (6-3)

The Bayesian predictive density Pb(YI z) is then given by computing the marginal density using

the posterior so

pb(yl) fp(y Ix,e)p(el x)de (6-4)

This approach is direct and simple although the assumption of a prior density p(O) on the

- -," -. ' - , ,'. . - ' .. -" --. "-'-. " .-
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parameters 0 is bothersome from both a theoretical and practical point of view.

A major objectio, to the Bayesian approach is the use of an arbitrary pior density on the

parameters to expre. ignorance. If a uniform density is used for the prior on 0, then a nonsingu-

tar transformation of the parameters to a new set + - (O) and use of a uniform prior on 4 in

general produces a different posterior density. Thus there is a certain arbitrary choice of the

parameterization and resulting posterior. A way around this is the use of noniuormaive prior

densities. Such densities give posterior densities that are invariant to transformations of the

parameter space (Jeffreys, 1961; Box and Tiao, 1973). In situations where a noninformative prior

exists, it can be obtained in terms of the Fisher Information matrix.

In recent years, some intriguing connections between the bayesian predictive density and

concepts of entropy, frequentist methods, invariant methods, and noninformative priors have

been made. Still in a strictly Bayesian context, consider the nepntroy measure (2.6) applied to

the Bayean predictive density (6-4). Of course a Bayesian would take expectation of this meas-

ure with reqect to the unknown parameters 0 which will be called the Sayss Risk. Using (6.4) and

interchanging the order of integration, the Bayes Risk between any two predictive densities

p1(y x) and P2  x) is

,EOE, , .,p ,,,(y Ix) ; p2(y Ix)) -" fp(O)f p(zI e)fpI(yl x,) loPI dy

= .E~iJ,4zpgpi X) log p 2(y6

PAY I zX)

Now setting PAY'I X) - Pb(VI X) guarantees that the Bayes Risk between Pb and any predictive

density P2 is nonnegative and zero if and only if Pz(yI z) - Pb(yI z).

Thus in a Bayesian context, the Bayesian predictive density is optimal in terms of the Bayes

Risk, iLe. the expected negative entropy measure with the expectation also taken over the param-

eten O. As was noted by Aitchison in the original derivation of this result for the case of x and y

independent, ther are a number of interesting cases where the negative entropy measure, ie. the

Bayes Risk excluding expectation over the parameters 0, is not a function of the parameters O. In

such cases the Bayesian predictive density is optimal in a frequency sampling sense where there is

a fixed unknown true parameter value and the negative entropy (2-6) is used as the measure of

error. This topic is discused in the next section.
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6.2 No Imvaul Psdkdve ~Duss

In several particular cams, the optimal predictive density has been found that minimizes the

negative entrpy. Murray (1977) considers the class of d-dimensiond multivariate normal densi-

ties N4(PA) with

p~yjILA) - (21r)di 2 1 11 -Le*xp(-jLfI&&) (6-6)

In this case Aitchison and Dunsmore (1975, p. 29) show that using the noninformative prior den-
sity proportional to I 11-, the Bayesian predictive density is the d-dimensional Student distribu-

tion

MyI X) - Sid [n-1I,(n+1XR-1r-11J (6-7)

where the d-dimensional vector z is St:(kb c) if it has density function

pWz - r{(k +iy2)(68
wr" 2r{(k -d +1)2)1 kcl -I{1+(z-b)T(cY1 zbK +1>2 (

This Bayes predictive density was shown (Aitchison, 1975) to result in the negative entropy not a
function of the unknown parameter 0.. It is thus also optimal in the frequency sense.

This same result was derived by Murray (1977) using invariance concepts. Consider the clam
G of invariant predictive densities p0 (yj z) that are invariant to translations and linear transforma-

tions of the sample :. In this claw, the best invariant predictive density p, (y z) was shown to be

(6.7) which gives a constant value of the negative entropy independent of the value of the true
parameter value 0.. This gives a strictly frequentist interpretation of the Bayes predictive density.

A stronger result reported very recently (Levy and Perng, 1986) is the minimality the negentropy
for the best invariant predictive density p,(yi z) uniformly in the unknown parameters

0.- (-M,) among any predictive density in the class G of invariant predictive densities.

6.3 Companm at imtre for Muidvaziate Normal

To illustrate the usefulness of the predictive inference approach using negentropy, the
results for the multivariate normal distribution are given below in terms of the relative odds of
the likelihood ratio. Consider the case (6-6) of the multivariate normal density N1 (1p,,). Here

three methods are compared: the en pwive mtahod using the predictive density

ps y x) - Nd(y,AIz),±(z)) where the maximum likelihood estimates ;&(x) and ±(x) are used, the
en norwmu with estimates (,1,(n+1(-d-2)-1 ) which minimize the negentropy in the class of

normal densities, and the Bayesian predictive density which is identical to the best invariant
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predictive densty.

The expected megsntropies are shown in Table 8 for the above three predictive densities.

Predictive jNumber of Observations (n)

Denaties 4 6 11 14 20 50

1-Dimensional

Estimative 1.191 0.366 0.130 0.094 0.060 0.021

(2.48) (1.170) (1.037) (1.121) (1.009) (1.001)

Best 0.476 0O22 0.103 0.079 0.053 0.020

Normal (1.21) (1.048) (1.009) (1.006) (1.00) (1.000)

Beat 0282 0.180 0.094 0.083 0.051 0.02

Invariant

8-Dimensional

Estimative -- 36.87 8.08 2.85 0.61

(1U4P (221.4) (3.819) (1.127)

Best -- 6.79 3.15 1.63 0.50
Normal (8.93) (1-56) (1.127) (1.010)

Best - -4.60 2.69 1.51 0.49

* Invariant

Table 8. Expecte Negative Entropy (and the Geometric Mean of the Likelihood Odds Relative

to the Bke Invariant).

In comparing two Predictive distributions, the relevant quantity is the difference between their

negentropies (2-5) (Larimore (1983a)). T1he exponential of this quantity is the geometric mean of

the relative Odds Of a Sample Y having come from the two respective predictive distributions.

This exponential Of the negentropy difference is also given in parentheses in Table 8 for the best

W, r./. r--
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normal and estimative methods relative to the best invariant method. Since ep (a-b) -+(a-b)

for a-b<<1, we no that for negentropy differences much less than unity, the odds of an

observed d-dimenmonal sample y coming from either of two predictive distributions is about

equal. For the negentropy difference near unity, these odds are disproportionate of order e =2.7;

and if it is much greater than unit the odds can get very large. Note that a 20 percent increase in
the negentropy as between the estimative and best invariant for d =1 and n =20 has only a one

percent odds advantage. On the other hand, a 17 percent increase in the negentropy as between

the best normal and best invariant for d -8 and n =14 has an odds ratio of 1.56. This emphasizes

the importance of comparing the negentropy on the basis of the arithmetic difference and not the

relative proportion. Note that for very small samples the relative odds ratio can be much larger

than unity and even in the tens or hundreds. Thus there is a huge potential gain in the use of

predictive inference in very small samples as has been noted in different terms by Aitchison and

Dunsmore (1975, p. 231), Aitchison and Kay (1975) and Murray (1979).

V,

U'



7. CONCLUSIONS AND RECOMMENDATIONS

71 Cemwdum Frm Pham I Stedy

In this Phase I SBIR study, statistical methods are developed using predictive inference and
entropy. This approach has a strong intuitive appeal as a result of the justification of the entropy
measure based upon the predictive inference framework and the fundamental statistical principles
of sufficiency and repeated sampling. This approach applies to a wide class of inference problems
including:

" general inference methods such as parametric or nonparametric
methods

* exact evaluation of small sample procedures

" determination of model order or structure including the cam of non-
nested multiple comparison

* time series analysis including definition of optimal tracking of time
varying processes and optimal detection of abrupt changes.

The entropy measure provides a fundamental measure for the comparison of alternative statistical
procedures and provides a basis for developing optimal statistical inference methods.

In this study a number of particular topics were addressed from the predictive inference and
entropy perspective including:

" statistical model building involving the determination of parametric
model structure and order in the general case of constrained multi-
ple nonnested alternatives,

" time series modeling and forecasting involving the determination of
parametric model structure and order,

" adaptive time series analysis involving optimal methods for tracking
dow changes as well as for detecting abrupt changes or failures,

* mall sample inference for multivariate distributions of the exponen-
tial family.

Some major results were developed on these topics that demonstrate the feasibility and desirabil-
ity of developing statistical methods using predictive inference and entropy.

A number of results were obtained for the nonnested multiple comparison problem based
upon the study of constrained maximum likelihood estimates. These include:

,+P " " + "P e" "- " ,/ -.. p,,e ., ," ," ,. #- ,,. ,., ., ,+, .,.," .. ,7 ,,, " ,4 -,"" ", ', '. '.P ' ', ',/ ' ",p p",' " "" ,+ .,,p .'#" " I
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0 consideration of the general constrained case

* genera extension of Akaikes' AIC procedure to constrained non.
neaed multiple comparison problems

0 solution of the general constrained case requires that a condition on
the Fisher information and Heuian matrices be satisfied

* a general model order and structure selection method was shown to

be asymptotically optimal.

Previous developments consider only the can where the true parameter is approached asymptoi.

cally and exclude the can where the true parameter lies outside the models considered. The con-

strained cam investigated in this study gives a bass for viewing the predictive inference and

entropy method as model approximation when the models ar restricted and asymptotically

biased. These results provide a basis for the use of predictive inference and entropy on the gen-

end time series analysis and adaptive time series analysis problems involving conained non-

nesed multiple comparison.

Using currently available methods, the time series analysis problem is difficult because the

parametric model structure is unknown and requires the fitting and comparison of many different

models. Also current methods are numerically and statistically lcoditioned for some models.

'e approach of predictive inference and entropy provides a natural solution to the multiple com-

parison problem. The results obtained using the predictive inference and entropy approach for

multivariate time series analysis include:

0 Explicit expremions for a lower bound on the achievable accuracy in
the estimation of the transfer function and power spectral matrix

0 This lower bound applies to the cae where the true model order is
unknown and a model order determination procedure is used.

* The lower bound is achieved for ltre samples using maximum likel-

ihood estimation and the AIC order determination procedure.

An example of the estimation accuracy of a true ARMA(4,3) procesa using spectral smoothing,

AR model, and ARMA model fitting show the considerable difference in using these various

methodL

Markov models of time series were developed as a bai for stable time series analysis

methods using the canonical variate method (CVA). This method is numerically and statistically

stable and has been applied recently to a number of high order multivariable time series analysis

problems. Ths approach provides the basis for adaptive time series analysis methods.

MArkov models of time series with changing characteristics were developed including slowly

and abruptly changing proceses. Using the CVA method as the computational method, the

entropy methods were applied to adaptive time series analysis:
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0 S methods for determining the optimal data length for adap.
tau to dow changes were developed.

" Sftiical methods for choomg the optimal time interval for detec.
tim of an ablupt change in the process were developed.

* Th entropy measure is optimally sensitive to any abrupt changes
including change in proces dynamics, changes in the excitation
nows levels, and jump. in the process state.

Thm rewdt demonsrm the feasibility of developing adaptive time series analysis methods

based upon entropy methods and the CVA computations. The CVA computa have been

demonsraed in real time identification of multivauable systems. Thus the feamibility of adaptive

time srie analysis in real time has been demonstrated.

Small sample methods were developed using the predictive inference and entropy methods.

Th. justificaton of entropy based upon the sufficiency and repeated ampling principles provides

a sound justificatiOn for the use of recently developed small sample methods based upon entropy.

The Bayesian method was extended to the case where the informative and predictive experiments

am dependent. The theory is illustrated for the multivariate normal distribution using the Baye-

sian, best invariant, estimative, and best normal predictive densities. The relative measure of

apais shown to be the per sample relative odds ratio which is the exponential of the

entropy measure.

7.2 lEm-. de . for Furthw Riennh ead Devdopmmt

This study has demonstrated the feasibility and usefulness of predictive inference and

entropy methods particularly in the areas of:

0 constrained nonnested multiple comparison of models

* model order and structure determination for time series

0 modeling of changing processes using Markov model structures

0 optimal adaptation to slowly varying procem by optimal selection
of data interval

* optimal adaptation to abrupt changes of unknown type at unknown
times by optimal selection of the detection data interval

0 automatic stable computation of time series models using the CVA
method

0 determination of lower bounds for the estimation of transfer func-
tions and power spectra

Thew achievemuts provide a bases for the further research and development of predictive infer-

ence and entropy methods.

Id
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The arm o greatest promise appear to be those of adaptive and nonadaptve time series

analyis for the followin reasons:

* the number of potential applications to DoD systems is very large

" time series analysis and adaptation are the major problems in adap.
tive control

" to address the adaptive time series analys problem requires an
apprc h that deals with the multiple comparison problem in a fun.
damental way that is offered by predictive inference and entropy
methods

" among the current time series analysis methods, only the CVA
method is suitable for real time solution of the problem

* present and near future computers are capable of multivariable iden-
tification in lea than a second of computation for high order systems
of domns of states

These methods have been demonstrated to be feasible, and the development of online adaptive

time series analysis software for general application would provide an enormous capability for

DoD systems. Presently there are no other known approaches that will achieve this goal. Such

adaptive time series procesors would allow for the adaptation of systems to slow and abrupt

changes in the environment.

The topics recommended for further research and development include:

0 further research and development on the adaptive time series
analysis methods for adaptation to slow and abrupt changes

0 development of algorithms for implementation of the adaptive
methods that are numerically stable and accurate and are sttisti-
cally reliable

0 prototype algorithm testing to demonstrate the accuracy, reliability,
and computational requirements on typical DoD problems.

* software development to provide modular, documented, and verified
software in one or more general progiamming languages.

The achievement of thes objectives would provide a dramatic improvement in the performance

Of adaptive methods and the availability of software for adaptation in DoD systems.

, ... .,, . ,.. . . . . .. . ..- - .. .. .. . V, . . .a *., . . .
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The goneal problem of choosing a model from among a multitude Of alternative
models remains one of the difficult problem of statistical inference. Traditional methods

of statistical hypothesis testing apply directly only to the case where there are two

hypotheses under consideration and one is a subset of the other, ie., the two hypotheses
are nested. I such cases, classical methods are applicable and lead to well understood
results. In the case were there are more than two hypotheses involved, the use of the

classical methods are not well defined or understood even in the nested case (see for

example the discussion in Anderson, 1971, pp. 270). Although the probability of rejecting

one hypothesis in comparing any pair is well defined, the repeated application of such
pauirws comparisons results in a test whose properties are not understood. In the cas of

comparing two hypotheses that are not nested, the distribution theory is available but
much more complicated (Lauimore, 1977).

Beyond these difficulties in carrying out the classical procedures is the lack of a gen-
eral framework for formulating and solving the problem of nonnested multiple comparison

of constrained models. The predictive inference approach offers a predictive measure of
the accuracy of various model selection procedures that apply as easily to the case of non-
nested multiple comparison. The adequacy of a model selection procedure is measured in

terms of the accuracy of the selected models in hypothetical repeated 'future" experi-

ments. This is very attractive in the context of scientific inference were the role of model
building is to provide a basis for prediction of the future behavior of a phenomenon. The

entropy measure provides a most sensitive measure based upon the sufficient statistic as
contained in the likelihood ratio. The derivation of the entropy as a measure of the pred-

iction error of a predictive density in the predictive inference framework is based upon
the fundamental principles of sufficiency and repeated sampling (Larimore, 1983). This

provides a strong theoretical basis for the use of entropy in predictive settings of scientific

inference. Ina mre narrowly defined problem of quality control or decision theory

involving a well defined lou function, other procedures may be more appropriate. But in

a predictive scientific setting, the approach using predictive inference and entropy seems

much more Justified.

Consider the problem of choosing among a multitude of model structures on the
basis of a set of observations. Uf we adopt the predictive criterion that the chosen model

shoud be the best in a predictive sens in predicting another independent sample from
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the same pyoc., then the optimal choice is the model selection procedure with the

minimum nepatropy. The major problem is the practical evaluation of the negentropy

measure and the determination of efficient procedures that come close to minimizing the

negentropy measure.

In this paper, the theory of inference for nonnested multiple comparison is

developed in the context of predictive inference and entropy. To develop a general

theory, the case of maximum likelihood is considered for moderate and large samples.

The can where the true process model is not contained in the models considered for

inference is the usual situation in scientific inference since even the most general model

forms uually do not include certain complexities such as nonLinearities, nonstationarity,

etc., that may have a small effect or be very difficult to handle. Previous approaches

involving the entropy measure have not explicit included this miss-modeling. It is shown

that this missmodeling can be directly considered in the analysis. The resulting theory is

very attractive in that is gives an explicit interpretation of the predictive inference

approch as model approximation of the true process using simplified alternative model

forms. The entropy methods lead to procedures that select models that in the predictive

sense are the most accurate in approximating the true process model. The classical diffi-

culties of nonnested and multiple comparison do not arise in this predictive inference set-

ting.

In the paper, first the subject of constrained maximum likelihood estimation is

developed in the predictive inference and entropy context. This is used to derive the

expected negentropy for maximum likelihood estimates, and then to determine an

unbiased estimate of the entropy. Finally, bounds on the achievable accuracy of model

selection procedures is derived that depend on the number of estimated parameters in the

model fining.

2. CA@ M iu Lkdglhod Eindadm

In this sction, properties of the maximum likelihood parameter estimates are

developed for the case that the true probability model is not contained in the class of

parameterizd densities that are considered for inference. The classical development of

the asymptotic consistency and minimum variance of maximum likelihood estimators is

for the case where the true density is contained in the parametric class.
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The predictive inference framework as in Larimore (1983) is adopted here with

p(x,0) the parameterized probability density where 0 is a vector of parameters, x is the

informative sample and y is the predictive sample. Suppose that the parameter vector

-(01,e,...) is a finite or infinite set of parameters, and for each subset of distinct poi.

tive integers k -(k .... k,) consider the subspace ek of 8 such that only the correspond-

ing 0& ...... o. are nonzero where e denotes a member of ek, and let C* be the the

class of models C -4p(z,0E) E. These classes of models are in general nonnested so

that we do not in general have Ct CC, or C, CCk. The maximum likelihood estimator for

the class C1 will be denoted as P(x).

The development of the maximum likelihood theory is straight forward for the case

where Taylor series expansions are posible. This holds under the following regularity

conditions (Cox and Hinkley, p. 281):

(i) The parameter space is closed and compact.

(ii) The probability distributions defined by any two different values of 0 are distinct.

(iii) The first three derivatives of the log Likelihood I(x,0) with respect to B exists in the

neighborhood of the true parameter value almost surely. Further, in such a neigh-

borhood, n-I times the absolute value of the third derivative is bounded above by a

function of x, whose expectation exists.

In particular, these conditions permit the interchange of expectation and differentiation

up to second order.

In the discussion various order models are considered, and the relationships

between the various orders is developed. The log likelihood function of the informative

sample x will be denoted by I(x,e), and the gradient row vector and Hessian matrix

denoted I'(x ,0) and I "(x,O) respectively. Expectation , denoted E, will be with respect to

the true denity p(z,i) unless stated otherwise where i denotes the true parameter value.

Defin the peowJwdn V of 0 onto e1 as the parameters Ok EOk minimizing the negentropy

R, relative to the informative sample x

R,(ieo) is e(x,) - tl(x,e) (2-)

At the minernum ,the gradient of (2-1) is zero so from the regularit conditions

El '(x ,IV). -, (2-2)
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and the minimum is unique if and only if the expected Hessian, denoted D, of (2-1) is

pouizive definite in an open neighborhood of the minimum. From the regularity condi-

tions, the Hesian is given by Dt) =EI "(xj).

To determine the moments of the maximum likelihood estimates 6k, consider the

first order equality

0 ='(x,) = '(X,) + (P-4)1 "(x,j) (2-3)

Taking expectation with respect to the the true density and using (2-2) gives the equation

Dk(EP4)= 0 (2.4)

that holds asymptotically for large informative sample N. For 0# identifiable, i.e.

unique, D,* is nonsingular which implies that to first order

EPr =eP (2-5)

Now using (2-3), the covariance of the estimation error is

E (.X )r = (DY'E(1 ,T(x , )I '(x , )DkY (2-6)

Note that in the unconstrained case, the middle term which is the Fisher information

matrix is equal to minus the expected Hessian D.t , but this is not in general true for the

constrained case.

3. Expected Negadve Entropy for Maximum UkdhooQ Eilmat

To evaluate the expected negative entropy for maximum likelihood estimates, con-

sider the predictive inference setup as in Larimore (1983). The general case of depen-

dence between the informative and predictive samples is considered. The expected nega-

tive entropy is a measure of the degree of approximation of the true conditional density

p (j,) by the predictive density p(yI z ,jk) for predicting the future predictive sample y

from the informative sample x. The expectation will be taken in two steps, first with

respect to the random variable yj x and then with respect to x. In this section the likeli-

hood function I(P) -I(y x,#(z)) is for the predictive sample yl x, and the maximum

likelihood estimator bk (z) is on the informative sample x.

Expanding (2-1) in a Taylor series gives a second order expression for the informa-

tion distance which holds asymptotically for large sample size of the informative sample,

4,.,.,'-'--....,-- v "":,'.':.. .. '-..:'.: <''/ ''.':''.. '..-: '..;""+- ;
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i.e. for the maximum likelihood estimate P close to the projection

R , (i,P(z)) = E[I(C) - I(P)] + E[I(i) - I(&)]

=-El'(0XV - P)] - E[ (V - (O)1"(fXP - ii)] + E[I(i) - l(P)]

snce ~ (z) is independent of I (yJ x ,k) and using the gradient property of the projection

(2-2). The second order expansion is only locally in the estimation error 04.. about the

projection k of the true parameter value i on the subipace of the parameters correspond-

ing to the model 0. Note that this expression gives the exact bias term RA,.(iJ) in small

samples and involves no approximation.

4. Unhblas Egmsdom of Entropy

For decision on model parametric order and structure, it is necessary to estimate

the negative entropy based on the informative sample. One such procedure is due to

Akaike (1973). We consider the case where the informative sample x and the predictive

sample y are independent. For each selection of a parameter subset k =(k. ... k,), the

Akaike information criterion for comparing the maximum likelihood estimators is

AIC(k) = -21op(xJ,(x)) + 2K(k) (4-1)

where K(k) is the number of parameters, i.e. the dimension of e. The minimum AIC

estimator (MAICE), denoted iA(x), is iA(x)=4(z)(x) where i(x) is the parameter set

minimibing AIC(k). The AIC(k) is an unbiased estimator of the negative entropy based

upon the informative sample and the assumed model structure. The predictive sample is

essentially replaced by the informative sample, and the term 2K(k) is an adjustment for

the bia due to the correlation between the informative sample x and the estimate bk(i).

Following Akaike, we use the maximized log likelihood 1.(P) - 1(,1V(x)) as an
estimate of the relative entropy and compute the bias in the procedure. We expand the

lot likelihood function as in (3-1) except that below the likelihood is on the informative

sample so that there is dependence between I(x,P) and V(x). In particular, using (2-3)

gives
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- EL'(tX - E - '- j)] (4-2)

Consider expanding the expected log likelihood difference as in (3-1) but using (4-2) as a

result of the dependence. Thus

E[1(8) - I(6)J = [(e) -( + E (I) -I

- -E ' 6 - 6)]- E[[(' - -)] + E[(i) - 1(il)]

- E[(I - eh )r"(IVXb' - i')] + R(i,#)

-tr(D.'y'E{1'T(zJet )I(xk)) + R(B#) (4-3)

where the third equality follows using the expresion (3-1) for the expected negentropy.

In the general case, the bias term in the negentropy, R(iO), is correctly estimated except

for the trace term. Asymptotically, if P approaches 0, then the matrix of the trace is the

identity. This is the case considered by Akaike (1973). In the general constrained case,

this may not be the case so that the bias depends upon the unknown true parameter value.

What is required is a restriction such as the Hessian and Fisher information matrix being

equal globally which gives

-tr(D1 -s'E {IT(x,8)'(xk)} = £fir() = K(k) (4-4)

Consider the case of fitting two models and 0i, and consider the expected differ-

ence of the maximized log likelihoods

E[((') - i(i')J = E[L(0) - i(ii)J - E(1(0)-t()

= + dim(O) - dim( 18) + R(i,6) - R(i,P) (4-5)

Thus for relative comparisons among hypotheses based on a given sample, an unbiased

estimate of twice the negentropy E (I)- I(bk)] is given by the Akaike information cri-

terion. Note that the proof of this is much more general than that originally given by

Akaike (1973) since it applies to the general case of comparisons of nonnested structures.

Alm, the true parameter 0 need not be contained in the structures being compared so

long as the Fisher information maux Ls a constant in a neighborhood including the true

parameter and its projection onto the sub~sces of these structures.

4,
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S. ehs an d Accuracy of Modd Sdectio

To obtain a correction for the bias in the aple lo lkelhood as an estimate of the

entropy measure, the Fisher information must be constant or other restrictions are

required. In this section the Fisher information is assumed to be constant in a neighbor-

hood of the true parameter 0 containing the projection P. Under these conditions a

lower bound on the entropy measure is derived. From the above relationships and stan-

dard arguments of asymptotic consistency, it follows (Cox and Hinkley, 1974, p. 292) that

the constrained maximum likelihood estimate P is consistent and the limit in probability

is P. In addition the properties of the unconstrained maximum likelihood translate to the

projection i since the Fisher information matrix is constant.

Consider first the case of estimating the model i using the k-th order maximum

likelihood estimator P. Then from (3-1)

R(,i') =z-- DkE{(I-4Xr-O )r} + R(i,0j) 2 + R(&ij) (5-1)2 2N

where the inequality follows from the Cramer-Rao lower bound

E[( - _)T(DkX*P-*)] a trlr(,k/N = K(kY)N where K(k) is the number of parameters

estimated in the model i and N is the sample size. The last term in (5-1) is the bias in
using too low an order in the model fitting, and the first term is the sampling variability

apart from the bias. This bound K(k2N on the variability is achieved for an asymptoti-

cally unbiased and efficient estimator for the clan C, such as maximum likelihood. In

particular, if the true model order is no greater than k, then

Lim N[R(6,5) - R(>j)J a k (5-2)
N -a 2

The true order k of the process is usually not known and may in fact be infinite, and the

bias term in (5-1) is not known so that the above discussion is not very useful in practice

although it dos give some insight into the accuracy issue.

Consider now the Akaike MAICE procedure using the estimator 'A . Assume that

the true model order is infinite, so that for any j' there exists a jzj" such that OS>O.

Define the optimal predictive order k"(N) depending upon the sample size N as the order

k minimazug the negentropy (5-1). Then under suitable assumptions, the remarkable

result is obtained by Shibata (1981a. 1981b, 1983) that asymptotically as N-
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(i) the lower bound using any order selection scheme is for each N given by evaluating

(S)at k-k'(N), and

(ii) this lower bound is achieved by the MAICE estimator OA"

Thus the lower bound on the negentropy which is achieved by MAICE is equal to the

negentropy that would result from using an efficient estimator with apriori knowledge of

the optimal order k*(N).
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1. INTRODUCTION

The probiem of determining the achievable accuracy in identifying a model for a station-

ary multiple time series is considered in this paper. The cases of the presence or absense of an

exogeneous input or additive measurement noise are included. Consider the general case where

x(t) is the exogeneous input and y(t) is the observed endogeneous output of a system which may

include other unknown excitations and measurment noise. Thus consider the jointly stationary
gaussian vector time series x(t) and y(t), t=...,-1,O,1,.... with power cross-spectral matricies

*S (h,,), $,(w,e), S (w,e) parameterized by 0, and denote the power cross-spectral matrix of the

joint vector (xrT(), yT(t)T as S(w,0)

Statistical inference is considered on a class of linear Gaussian processes parameterized by

0. Specifying a parametric model for the conditional process y(t), ta-s given x(t), t<s implies a

causal linear model of the form

y(t) = q(t) + hQ-r;)xQ) = q(t) + r)(1)

where h(t;9) is a causal linear system giving the response r(t) in y(t) due to the past exogeneous

input x(t) and where q(t) is the error in predicting y(t) by r(t). From linear prediction theory
(Gikhman and Skorokhod, 1969), the transfer function of h(t;0) is H(w;0)-S (,0)S. 1 (w,0), and

the error q(t) in predicting y(t) is uncorrelated with r(t) with power spectrum S (w;e)=S--(Wv)

- (w,0)S(w,0)H*(w,0). Note that any class of parameterized models S(w,0) can be equivalently

specified by the parameterized models (S,(w,O), H(w,0)) which will prove more convienent.

2. ENTROPY AND SPECTRAL ACCURACY

Consider the following predictive inference setting (Larimore, 1983) involving an observed

inforWive ,swple ,r=(xr(1),Yr(1),...,xr(N),yr(N)) of size N used to estimate the process model,

and similarly consider a conceptual predictive saWpie v of size M used to evaluate the accuracy of

the estimated model. The predictive sample is assumed to be identically distributed but indepen-
dent of the informative sample. Consider the problem of inference on the parametric class

{p(v,0),0(O) of models with probability densities p(v,O) based upon the informative sample u

Consider the conceptual repeated sampling experiment where on each trial the samples u and v
are each drawn independently from the process S(w,0.) with 0. assumed to be the true parameter

value. An estimative model A =p(v ,i(u)) is chosen for the density of v by some parameter estima-

tion scheme 6(u) . The negative etropy, also known as the expected Kullback-Leibler discrimina-

tion information or expected I-divergence, is a measure the error in approximating the true

density p. of v by the estimate p and is given by
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R(p..6) = E.K(p.,p) = E. f p(9,.) log P ( ' )  (2)
p(V,(au)) ,(

where E, denotes expectation relative to u and K denotes the KuUback-Leibler information. The

negative entropy measure follows as the natural measure in the predictive inference setting from

the fundamental principles of sufficiency and repeated sampling (Larimore, 1983). This
approach applies to very general modeling methods such as nonparametric, semiparametric or

parametric procedures as well as methods including decisions on model structure or order such as

those used for AR and ARMA modeling.

Let lower case variables denote a sample of size M of the predictive sample, e.g.
y=(y(1).y( 2 ),..,yT(M)) and %y, denote the covariance matrix of y. By expressing the density

p&,x;O) - p(y-r;)p(x;O) in terms of the conditional random process q(t) = y(t)-r(t),

p (y ,,) = p (y x,O) p (z,0) = p (y - r (x ,),O) p (,e) = p (qI (z,o),) p (z,) (3)

the log likelihood separates with the density of x(t) in many problems not a function of the unk-

nown parameters or at least a function of a separate set of parameters. A conditional viewpoint

is taken in the folowing where only the conditional term p(ql r(x,O),O) with x considered as non-
random is considered. The depencence of r on x will be understood in the notation. Inclusion of

the second term is tantamount to modeling the joint vector time series involving the two series

x(t) and y(t) jointly rather than as exogeneous and endogeneous respectively. The joint case is
included as a special case of 7(t) = (yr(t),xr(t)) a vector process with no input '(t) which will

be discussed as a particular instance of the model throughout the paper. The I-divergence (2) con-

,* ditional on x thus becomes

p (ql iS,.)

K(p.,) = f p(qJ x,e.) log p(q x, ) dq = Elogp(y-r.,.T,) - Elop(y-;,I.,)

Elop(y-r.,.) - Elogp(0-,.)+(,.-,') .)

- Elopy-.4,) - Elogp((y-,r.),I,,) - E(,.-q±4(,.-,9) (4)

where f - r(xj), r. - r(x,S.), and where E denotes expectation with respect to the density

pi (yS.).

For brevity set S denote the true spectrum, and let S denote an estimate of S. We will

need to suame that S(w) is continuous and that S,,(w) and Y,,(w) are positive definite for
w--w,wJ. In the discusmon, the predicuve sample v will be considered to be conditional on x(t)

-- - - - PZ
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and to have an infinite sample smze M. This will require the normalization of the negative

entropy and 1-divargence by the sample size M. The l-divergence per sample time conditional on

z0), which will be denoted I(S§) and called /-divergence for brevity, can be expresed using (4)

as (Kazkos and Papentoni-Kazakos, 1980)

2 2

f .j- JoiS(w) - (w))S +wX r(w)-w d 

where the suLcnpi emphaas that the sample of ize M of v becomes infinite. The negative

entropy per ample. or ,egv,opy for brevity, is defined as N(S, A)=, -R(p.0) = ) I(S').
u-( M

Note that the l-divergence is composed of two terms, the last due to the error in estimating the

transfer function H(w) and the first due to the error in estimating the spectrum S((w) of the

noise q(t). A useful approximation for the first term in (5) is

2 fi ogl s,(w)§,-()j + tr[ - s.(w)d.- (w) 2

-w 2w

4 f-rf S-(w)D' 2w (6)

which holds to second order in the elements of S as is easily shown by comparing first and

second derivatives of the integrands. This is a generalization to the multivariate case of the

integral of the squared relative error. Thus the I-divergence is approximately a quadratic form in

the estimation erroi of S,,w) and H(w), and these quadratic forms do not interact, ie. there

are no crow terms.

3. NORMAL1) SPEC ,AL ERROR IN PRiNCIPAL COMOPONEN7

In the multple time series cae, the spectral measure (5) has an intuitive interpretation in

terms of principar components of the power spectrum in the frequency domain. Principal com-

ponent representations of the spectral matricies S,,(w) and S.(w) have the form

J(0) Sq (w) J'(w) - D(o) ( S.(w) L'(w) - E() (7)

l , . . . ~ ~~ ~~... .. ...... ...-.-.-..-. .... ,-.. - - ,. ..--- ..-. .- - ......-.-. ;, .,-'-'v '':
,,,', ", . . ., . o.. ..... .. . . .. ' '.. . '.,'.',."..'. ... .- .- . .- ,- .-... . . . . . . . . .. .... .... ... ... ,.. . . . . . . . .,.. .- a.',

"- " .... ........... ,..-.. .. ... .. ..
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where J(a) and L(o) given as a function of frequency w are unitary matrix transformations which

diagonall S.(w) and S,,(o) respectively so that J(w)J'w) I = L(w)L(w), and where D(w)

and E (o) am rdiaoal matricies.

Using spectral factorization theory, the matrix function J(w) can be chosen as a continu-
ous function of w and the transfer function of a causal filter under either of the mild assumptions

(i) The process is purely nondeterministic ((Gikhman and Skorokhod (1969), Whittle(1954) for

the scalar random field case).

(ii) The autocovariance function is absolute summable (Goodman and Ekstrom (1980) for the

scalar random field case).

These derivations of the spectral factorization for the scalar case generalize to the multivariable

case with care given to determining the logarithm of a matrix (Larimore, 1984, 1977). Orthonor-

malintion of the rows of the spectral factor gives J (w) while the normalizing terms form the diag-
onal of D(o). Similarly, L(w) can be taken as a spectrafactor of a causal filter.

Let X(.,) be the random Fourier coefficients of x(t), i.e. the spectral random measure of
x(t) . Filtering x() with transfer function L(o) gives the principal component process i(t) which

is expressed in the frequency domain as XF(w) - L(w)X(w) , and which has the diagonal spectral

matrix E(w) and similarly for q(s).

Now consider the asymptotically equivalent expression (6) for the first term of the spectral

measure (5) which is invariant to the unitary transformation J(W) and is thus given by

1 (o)(>- D, do, 1 ! j'l2d,4 f trD1.I(w&) - D

-q 22
1 V Dgo i W d q l d

1 . Qi), -D(f) dww 1 j. I,,(w)1)2 d(wV A() 2+ Diro

'13 1 (?-D 1  .d (8)
D() 4w 2 j~ 6D() 6 jj(w) 411

where the approximation holds for the diagonal elements of 6(W) near D(w). The approximation

is very useful when only the estimated spectrum S,,(.) is known and we wish to consider the
error in estimating the truth S,(w) . The first sum on the right hand side is the integrated

squared relative error of the estimated cospectra of the principal components, while the second
term is the integrated squared coherency of the estimated spectrum 6(o) which would be zero if
lS(,)-D(,). Thus the firt term of the measure (5) has a clear interpretation in the multivariate
case when the true spectrum D(w) is diagonal but where the approximating spectrum D(w) is
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arbitrary coherency among components. The general case Ls reduced to this diagonal case by

choosing an appropriate filter J (w) which diagonalizm S,, (w) as in (7).

The second term in the spectral measure (5) is invariant to the unitary transformations

J (w) and L.(a) which gives

- rfwD1 (AG() - d(w)]LE(w)G(w) - (9n7.

- - Dm do

where G(,)-J(wW)(w)L6(w) is the transfer function H(w) expresed in the coordinate frame of

the principal component series () and i'(t). The squared magnitude error e di,(w) - Gjj(,)I 2 in

the ii element of the transfer function is weighted by the input signal to output noise ratio

Du Ejj for the pair i j.

4. A LOWER BOUND ON ACHIEVABLE SPECTRAL ACCUitACY

A lower bound on the expected negative entropy gives an asymptotic lower bound on the
achievable accuracy in the estimation of the process spectrum and transfer function. Ths applies

to the case of a fixed known model order as well as to the case of an unknown or infinite model
order with the use of the AIC for model order selection. The achievable spectral accuracy is

given as a function of the sample size and the number of parameters estimated.

Consider the case where the model S is estimated using a K dimensional constrained estima-
tor V. As derived in Larimore (1986) using the Cramer-Rao lower bound, the expected negen-

tropy is amptay bounded by

EM I(S §) 2 "7 + E (SS) (10)

where 5 is the model to which the constrained maximum likelihood estimate converges so that

EM($S,) is the bias in the constrained model and K12N is the sampling variability.

The bound K/2N is achieved for an asymptotically unbiased and efficient estimator such as
maximum likelihood. In particular, this assumes that the true model order is no greater than the
order K used in the model fitting. The true order K of the process is usually not known and may

*v *'.] ~
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intact be infinite, so that the above discussion is not very useful in practice although it does give

some innght into the accuracy issue.

Consider now the Akaike minimum AIC procedure (MAILCE) using the estimator OA

(Akaike, 1973). Assume that the true model order is infinite, so that for any subset of the infinite

parameter vector, there exist nonzero components. Thus it is not possible to obtain asymptotically

unbiased estimates of 0 using a fixed model order in estimating a model. Following Shibata

(1983, 1981a, 1981b), define the optimal predictive order K'(N) depending upon the sample size
N as the order K minimizing the negentropy (10). Then under suitable assumptions, the remark-

able result is obtained by Shibata (1981) that asymptotically as N-,a

(i) the lower bound using any order selection scheme is given by evaluating (10) at =K', and

(ii) this lower bound is achieved by the MACE estimator OA

Thus the lower bound on the negentopy which is achieved by MAICE is equal to the negentropy

that would result from using an efficient estimator with apriori knowledge of the optimal order

K'(N).

Using the spectral expression (5), an asymptotic lower bound on the expectation of the gen-

eralized relative squared error in estimating the power spectrum is given by

K*(N) I E {7(dw(

1 dw+ jE. f tr{ [H(w) - I(w)IS.(w[H(w) - R(w)r (11)
2 2w

This gives a fundamental limit to the achievable accuracy in any parametric estimation pro-

cedure. A further perspective on this fact is given by the justification of the expected negentropy

as the natural measure of modeling approximation error in statistical inference.

Akaike, H., (1973). 'Information theory and an extension of the maximum likelihood principle.!

In 2nd International S)Wposun on Information Theory., Eds. B.N. Petrov and F. Csaki, pp.

267-281. Budapes: Akademiai Kiado.



B-7

Gikhman, 1I. and A.V. Skorokhod (1969). Introduction to the Theory of Random Processes. Phi-

tadelphia: Saunders Company.

Goodman, D.M. and M.P. Ekstrom (1980). 'Multidimensional spectral factorization and unilateral

autoregressive models. IEEE Trans. Automatic Control, Vol. 25, pp. 25862.

Kazkos, D., and P. Papintino-Kazakos (1980). "Spectral Distance Measures Between Gaussian

Processes,' IEEE Tram. Automat. Control, Vol. 25, ppA50-59.

Larimore, WE. (1986). 'Constrained Nonnested Multiple Comparison Using Predictive Inference

and Entropy,' Dat

Larimore, W.E. (1984). Efficient Computation of Maximum Likelihood Estimates for Stochastic

Space-Tme Models with Incomplete Data, Final Technical Report, prepared under Con-

tract No. NASO-82-ABC-00241 for NOAA/National Marine Fisheries Service. Scientific

Systems, Inc, Cambridge, MA.

Larimore, WE. (1977). 'Statistical inference on stationary random fields. Proc. IEEE, Vol 65 ,

pp. 961-70.

Shibata, R., (1983). "A Theoretical View of the Use of AIC," Proc. of the International Time

Seit Meeing, O.D. Anderson, Ed.

Shibata, R., (1981a). "An optimal autoregresive spectral estimate.' Ann. Statist. Vol 9, pp. 300.6.

Shibata, R., (1981b). 'An optimal selection of regression variables." Biometrika, Vol 68, pp. 45-54.

Whittle, P. (1954). 'On stationary processes in the plane," Biometrika, Vol 41, pp. 433-49.

,.



~~~u'~~~l 4pw~ S ~ 's w * -


